Advanced Search
WANG Hao, CHI Yupeng, FANG Rongchao, CHEN Chao, ZHAO Xiaohui. Online inspection technology for weld formation quality of welded structural components[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 52-60. DOI: 10.12073/j.hjxb.20240409002
Citation: WANG Hao, CHI Yupeng, FANG Rongchao, CHEN Chao, ZHAO Xiaohui. Online inspection technology for weld formation quality of welded structural components[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 52-60. DOI: 10.12073/j.hjxb.20240409002

Online inspection technology for weld formation quality of welded structural components

More Information
  • Received Date: April 08, 2024
  • Available Online: April 23, 2025
  • Currently, the non-destructive testing for weld formation quality of welded structural components still predominantly employs visual evaluation with low efficiency and low accuracy. To improve the situation, an online inspection technology for weld formation quality based on structured light vision was proposed. The established 3D coordinate recognition model endowed this technology with the capability to perceive spatial 3D information; the image processing algorithm integrating YOLOv5 and the spatial distance judgment method autonomously identified weld types from structured light images and automatically measured geometrical dimensions such as weld width, weld reinforcement, and weld leg sizes. Particularly, this algorithm was not limited to monitoring weld profiles, but it could also accurately identify, classify, and locate various geometrical defects including excess weld metal, align deviation, incompletely filled sags, undercut, overlap, excessive convexity, and asymmetric weld leg. Moreover, it could autonomously evaluate defect quality grades online according to the ISO 5 817:1992 standard. Experimental results demonstrate that this technology achieves measurement accuracy at the 10−2 mm level for geometrical dimensions of welds, attains 100% grading accuracy for geometrical defect quality, and fulfills the requirements for online inspection of weld formation quality in automated welding production lines.

  • [1]
    FAN W, ZHENG L, WANG Y. An automated reconfigurable flexible fixture for aerospace pipeline assembly before welding[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97: 3791 − 3811. doi: 10.1007/s00170-018-2120-9
    [2]
    ZHOU B, WU Q. A novel optimal method of robotic weld assembly line balancing problems with changeover times: a case study[J]. Assembly Automation, 2018, 38(4): 376 − 386. doi: 10.1108/AA-02-2018-026
    [3]
    WANG X, XIE Z, ZHOU X, et al. Adaptive path planning for the gantry welding[J]. Journal of Manufacturing Processes, 2022, 81: 386 − 395. doi: 10.1016/j.jmapro.2022.07.005
    [4]
    WANG B, HU S J, SUN L, et al. Intelligent welding system technologies: State-of -the-art review and perspectives[J]. Journal of Manufacturing Systems, 2020, 56: 373 − 91. doi: 10.1016/j.jmsy.2020.06.020
    [5]
    RANJAN R, KHAN A, PARIKH C, et al. Classification and identification of surface defects in friction stir welding: an image processing approach[J]. Journal of Manufacturing Processes, 2016, 22: 237 − 253. doi: 10.1016/j.jmapro.2016.03.009
    [6]
    LI W, ZHANG H, WANG G, et al. Deep learning based online metallic surface defect detection method for wire and arc additive manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2023, 80: 102470. doi: 10.1016/j.rcim.2022.102470
    [7]
    LEE K, HWANG I, KIM Y, et al. Real-time weld quality prediction using a laser vision sensor in a lap fillet joint during gas metal arc welding[J]. Sensors, 2020, 20: 1625. doi: 10.3390/s20061625
    [8]
    CHANG C, CHEN Y. Measurements of fillet weld by 3D laser scanning system[J]. The International Journal of Advanced Manufacturing Technology, 2005, 25: 466 − 470. doi: 10.1007/s00170-003-1837-1
    [9]
    CHANG C, CHEN Y. Weld contour measurement of fillet welds by the reverse engineering technique[J]. Journal of Manufacturing Systems, 2008, 27(1): 1 − 6. doi: 10.1016/j.jmsy.2008.06.002
    [10]
    蒋豪. 基于线结构光视觉的大型结构件焊缝检测技术研究[D]. 长春: 吉林大学, 2023.

    JIANG Hao. Research on weld seam inspection technology for large structural parts based on line structured light vision[D]. Changchun: Jilin University, 2023.
    [11]
    HUANG W, KOVACEVIC R. Development of a real-time laser-based machine vision system to monitor and control welding processes[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63(1-4): 235 − 248. doi: 10.1007/s00170-012-3902-0
    [12]
    LI Y, LI Y, WANG Q, et al. Measurement and defect detection of the weld bead based on online vision inspection[J]. IEEE Transactions on Instrumentation & Measurement, 2010, 59: 1841 − 1849.
    [13]
    HAN Y, FAN J, YANG X. A structured light vision sensor for on-line weld bead measurement and weld quality inspection[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106: 2065 − 2078. doi: 10.1007/s00170-019-04450-2
    [14]
    LI Y, HU M, WANG T. Visual inspection of weld surface quality[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(3): 5075 − 5084.
    [15]
    刘政达. 复杂焊缝外观质量自动检测及评估方法研究[D]. 长春: 吉林大学, 2023.

    LIU Zhengda. Research on automatic inspection and evaluation method of complex weld appearance quality[D]. Changchun: Jilin University, 2023.
    [16]
    胡丹, 吕波, 王静静, 等. 焊缝表面缺陷激光视觉传感HOG-SVM的检测方法[J]. 焊接学报, 2023, 44(1): 57 − 62,70. doi: 10.12073/j.hjxb.20211231001

    HU Dan, LU Bo, WANG Jingjing, et al. Study on HOG-SVM detection method of weld surface defects using laser visual sensing[J]. Transactions of the China Welding Institution, 2023, 44(1): 57 − 62,70. doi: 10.12073/j.hjxb.20211231001
    [17]
    方纬华. 基于3D视觉的机器人焊接智能轨迹规划关键技术研究[D]. 济南: 山东大学, 2023.

    FANG Weihua. Research on key technology of intelligent trajectory planning for robot welding based on 3D vision[D]. Jinan: Shandong University, 2023.
    [18]
    CHU H, WANG Y. A vision-based system for post-welding quality measurement and defect detection. The International Journal of Advanced Manufacturing Technology[J], 2016, 86(9-12): 3007-3014.
  • Related Articles

    [1]WANG Zhongren, XIA Hai, MA Xiaofeng, ZHANG Wen, CHEN Kepeng, ZHAO Rongli, SHI Tielin. Welding deviation measurement method based on weld pool image analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240528001
    [2]LIU Wenji, ZHANG Yafeng, WANG Kekuan, YUE Jianfeng, SUN Yong. Arc initiation process characteristics and stability evalution method in P-GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 53-60, 67. DOI: 10.12073/j.hjxb.20230615004
    [3]ZHANG Yan, LÜ Na, HUANG Yiming, CHEN Shanben. Feature characters extraction with visual attention method based on three-light-path weld pool images[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 53-56.
    [4]GAO Xiangdong, YANG Yongchen, ZHANG Yanxi. Analysis of 3D reconstruction algorithm of laser welding molten pool image[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 5-8.
    [5]GAO Xiangdong, XIANG Junbin, Khalid M. HAFEZ, Katayama SEIJI. Restoration and characteristic analysis of X-ray images of molten pool during laser deep penetration welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 1-4.
    [6]LI Yuan, WANG Qinglin, XU De, TAN Min. Image processing and features extraction of molten pool for pipe welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 57-60.
    [7]DAI Guangzhi, CHEN Tiequn, XUE Jiaxiang, YAO Ping. Super-resolution analysis on molten pool image of metal activegas welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 53-56.
    [8]WANG Ke-hong, SHEN Ying-ji, QIAN Feng, YOU Qiu-rong. MAG welding molten pool image character and useful information analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 53-56.
    [9]XUE Jia-xiang, ZHANG Li-ling. Gray scale morphological analysis on molten pool image of metal active-gas welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (4): 13-16.
    [10]Yang Hai-lan, Cai Yan, Chen Geng-jun, Wu Yi-xiong. Principal component analysis based artificial neural networks for arc welding quality control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 55-58,64.
  • Cited by

    Periodical cited type(6)

    1. 汪平,李锋. 基于非局部均值滤波的结构光图像去噪. 计算机与数字工程. 2024(04): 1191-1195 .
    2. 申俊琦,刘晨帆,胡绳荪,杨辉,张超,吴定勇. 基于改进型U-net神经网络的焊缝图像处理. 天津大学学报(自然科学与工程技术版). 2023(04): 436-442 .
    3. 杨吉花,杨华,贾维丁,高艳,高宇鹏. 基于多尺度Retinex的激光雷达图像自适应增强方法. 激光杂志. 2023(05): 192-197 .
    4. 王树强,周游,陈昊雷,陈钊,韩彦林. 基于激光视觉的钢结构焊缝图像处理系统. 焊接学报. 2022(02): 101-105+112+120 . 本站查看
    5. 王树强,贺久洲,高元德,刘希敏. 基于视觉传感器的相贯线焊缝特征提取方法. 沈阳化工大学学报. 2022(04): 368-375 .
    6. 周兆逸,张亚南,王肖锋,刘军. 基于改正二维主成分分析的焊缝表面缺陷检测. 焊接学报. 2021(11): 70-76+101 . 本站查看

    Other cited types(8)

Catalog

    Article views (67) PDF downloads (33) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return