Citation: |
CAO Zhilong, AN Tongbang, ZUO Yue, ZENG Daoping, MA Chengyong, PENG Yun. Microstructure and mechanical properties of |
The 1,000 MPa grade Ni-Cr-Mo deposited metal was prepared by metal active-gas welding and tungsten inert gas welding respectively. Optical microscope (OM), scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM), were used to characterize the microstructure of the deposited metal. The mechanical properties of the deposited metal were evaluated through tensile testing, instrumented charpy impact testing, and hardness testing to investigate the influence of welding methods on the strength and toughness of 1 000 MPa-grade Ni-Cr-Mo deposited metal. The results show that the final weld microstructure of the deposited metal prepared by different welding methods consists of lath martensite, lath bainite, Granular bainite and retained austenite. TIG deposited metal is mainly lath martensite, MAG deposited metal is mainly bainite-like microstructure. The width of columnar crystals in MAG deposited metal is larger than that in TIG deposited metal, and the number and density of non-metallic inclusions in MAG deposited metal are larger than those in TIG deposited metal; The different microstructure led to significant differences in mechanical properties, both tensile strength reached 1 080 MPa, their yield strengths differed substantially: where TIG 1,008 MPa, MAG 829 MPa; AKV (−50 ℃) difference is obvious: TIG 95 J, MAG 51 J, TIG deposited metal strength and toughness match better.
[1] |
赵捷. 我国高品质船舶、海洋工程用钢研究进展[J]. 材料导报, 2018, 32(S1): 428 − 431.
ZHAO Jie. Progress on high quality ship steel and marine engineer-ing steel in China[J]. Materials Reports, 2018, 32(S1): 428 − 431.
|
[2] |
鲍亮亮, 王勇, 韩涛, 等. 海洋平台焊接技术及发展趋势[J]. 焊接, 2019(1): 21 − 30. doi: 10.12073/j.hj.20181029004
BAO Liangliang, WANG Yong, HAN Tao, et al. Welding technology and development trend of offshore platform[J]. Welding & Joining, 2019(1): 21 − 30. doi: 10.12073/j.hj.20181029004
|
[3] |
孙宪进. 高性能海洋工程用钢的研究与开发[D]. 北京: 北京科技大学, 2018.
SUN Xianjin. The research and development of high performance offshore structure steels[D]. Beijing: University of Science and Technology Beijing, 2018.
|
[4] |
马天恒. Q960E钢气保护焊配套实心焊丝的研究[D]. 镇江: 江苏科技大学, 2013.
MA Tianheng. Research on supporting solid wire for Q960E steel gas shielded welding[D]. Zhenjiang: Jiangsu University of Science and Technology, 2013.
|
[5] |
武丹. 合金元素对Q960钢焊缝金属强韧化作用机理研究[D]. 沈阳: 沈阳工业大学, 2019.
WU Dan. Study on strengthening and toughening mechanicsm of alloy elements on weld metal of Q960 steel[D]. Shenyang : Shenyang University of Technology, 2019.
|
[6] |
刘景武, 魏世同, 孙健, 等. 焊接方法对Fe-Cr-Ni-Mo系熔敷金属组织和性能的影响[J]. 焊接学报, 2023, 44(2): 96 − 101. doi: 10.12073/j.hjxb.20220308001
LIU Jingwu, WEI Shitong, SUN Jian, et al. Effect of welding process on the microstructure and mechanical properties of Fe-Cr-Ni-Mo deposited metals[J]. Transactions of the China Welding Institution, 2023, 44(2): 96 − 101. doi: 10.12073/j.hjxb.20220308001
|
[7] |
安同邦, 田志凌, 单际国, 等. 焊接方法对
AN Tongbang, TIAN Zhiling, SHAN Jiguo, et al. Effect of welding methods on microstructure and mechanical properties of
|
[8] |
BARRICK E J, DUPONT J N. Microstructural characterization and toughness evaluation of 10 wt% Ni steel weld metal gas tungsten arc and gas metal arc weld fusion zones[J]. Materials Science and Engineering: A, 2020, 796: 140043. doi: 10.1016/j.msea.2020.140043
|
[9] |
KANG B Y, KIM H J, HWANG S K. Effect of Mn and Ni on thevariation of the microstructure and mechanical properties of low-carbon weld metals[J]. ISIJ International, 2000, 40(12): 1237 − 1245. doi: 10.2355/isijinternational.40.1237
|
[10] |
马成勇, 田志凌, 杜则裕, 等. 热输入对800 MPa级钢接头组织及性能的影响[J]. 焊接学报, 2004, 25(2): 23 − 27. doi: 10.3321/j.issn:0253-360X.2004.02.006
MA Chengyong, TIAN Zhiling, DU Zeyu, et al. Effect of heat input on structure and mechanical properties of welded joint in a 800 MPa grade RPC steel[J]. Transactions of the China Welding Institution, 2004, 25(2): 23 − 27. doi: 10.3321/j.issn:0253-360X.2004.02.006
|
[11] |
安同邦, 单际国, 魏金山, 等. 热输入对
AN Tongbang, SHAN Jiguo, WEI Jinshan, et al. Effect of heat input on microstructure and performance of welded joint in
|
[12] |
LIU J W, SUN J , WEI S, et al. The effect of nickel contents on the microstructure evolution and toughness of 800 MPa grade low carbon bainite deposited metal[J]. Crystals, 2021, 11: 709.
|
[13] |
SUN J, LIU S. Influence of inter-dendritic segregation on the precipitation behaviour and mechanical properties in a vanadium-containing Fe–Cr–Ni–Mo weld metal[J]. Scripta Materialia, 2020, 186: 174 − 179. doi: 10.1016/j.scriptamat.2020.05.021
|
[14] |
HAN C, LIU Q, CAI Z, et al. Effect of solidification segregation on microstructure and mechanical properties of a Ni-Cr-Mo-V steel weld metal[J]. Metallurgical and Materials Transactions A, 2022, 53: 1 − 13.
|
[15] |
严春妍, 李午申, 刘欢, 等. 9%Ni 钢焊接粗晶区的韧化因素[J]. 机械工程学报, 2010, 46(18): 96 − 101. doi: 10.3901/JME.2010.18.096
YAN Chunyan, LI Wushen, LIU Huan, et al. Factors influencing notch toughness of coarse-grained heat affected zone for 9% Ni steel[J]. Journal of Mechanical Engineering, 2010, 46(18): 96 − 101. doi: 10.3901/JME.2010.18.096
|
[16] |
吴炳智, 荆文, 徐玉君, 等. 960 MPa 级熔敷金属组织及冲击韧性分析[J]. 焊接学报, 2015, 36(6): 77 − 80,117.
WU Bingzhi, JING Wen, XU Yujun, et al. Analysis on microstruc -ture and impact absorbed energy of 960 MPa deposited metal[J]. Transactions of the China Welding Institution, 2015, 36(6): 77 − 80,117.
|
[17] |
LI X, LIU Y, GAN K, et al. Acquiring a low yield ratio well synchronized with enhanced strength of HSLA pipeline steels through adjusting multiple-phase microstructures[J]. Materials Science & Engineering A, 2020, 785: 139350.
|
[18] |
SHI R, WANG T, GAO K, et al. Achieving low yield ratio in high‐strength steel by tuning multiple microstructures[J]. Steel Research International, 2022, 93(4): 2100415. doi: 10.1002/srin.202100415
|
[19] |
ZUO Y, AN T, MA C, et al. Embrittlement mechanism of 460 MPa-Grade nuclear power steel deposited after heat treatment[J]. International Journal of Pressure Vessels and Piping, 2023, 202: 104920. doi: 10.1016/j.ijpvp.2023.104920
|
[20] |
CAO R, CHAN Z, YUAN J, et al. The effects of silicon and copper on microstructures, tensile and Charpy properties of weld metals by refined X120 wire[J]. Materials Science & Engineering A, 2018(7): 350 − 362.
|
[21] |
曹志龙, 朱浩, 安同邦, 等. 1 000 MPa级高强钢熔敷金属强韧化机理分析[J]. 焊接学报, 2023, 44(7): 116 − 122. doi: 10.12073/j.hjxb.20220609002
CAO Zhilong, ZHU Hao, AN Tongbang, et al. Analysis of the strengthening and toughening mechanism of deposited metal of 1 000 MPa grade high strength steel[J]. Transactions of the China Welding Institution, 2023, 44(7): 116 − 122. doi: 10.12073/j.hjxb.20220609002
|
[22] |
焦继军, 曹睿, 李义民, 等. 焊后热处理对Q690高强钢焊缝金属冲击韧性的影响[J]. 材料导报, 2025, 39(4): 131 − 138. doi: 10.11896/cldb.24010076
JIAO Jijun, CAO Rui, LI Yimin, et al. Effect of Post-welding Heat Treatment on Impact Toughness of Q690 High Strength Steel Welded Metal[J]. Materials Reports, 2025, 39(4): 131 − 138. doi: 10.11896/cldb.24010076
|
[1] | ZHANG Yuelai, PENG Zhangzhu, CHANG Maochun, HU Long, PAN Guochang, XU Bo. Numerical simulation of residual stress in complex aluminum alloy welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 91-96. DOI: 10.12073/j.hjxb.20201215001 |
[2] | SUN Jiamin, CAI Jianpeng, YE Yanhong, Deng Dean. Numerical simulation of electro slag welding temperature field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 93-96. |
[3] | CHEN Jian, LÜ Lin, FANG Kai. Numerical simulation of ultrasonic impact treatment on 6061 aluminum alloy welding residual stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 88-92. |
[4] | YAN Dongyang, WU Aiping, JIAO Haojun, NING Liqing, ZHOU Liangang. Numerical simulation of residual stress and deformation on laser welding of "grooved-coat" structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 13-16. |
[5] | WANG Jianmin, ZHU Xi, LIU Runquan. Three dimensional numerical simulation for explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 109-112. |
[6] | CHENG Shi-jie, GAO Jia-shuang, LIU Ai-guo, ZHAO Min-hai. Numerical simulation of temperature field in plasma spraying on polymer matrix composite substrate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 101-104. |
[7] | ZHAO Yan-hua, LIN San-bao, HE Zi-qiu, WU Lin. Numerical simulation of 3D friction stir welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 75-78. |
[8] | WU Yan-gao, LI Wu-shen, ZOU Hong-jun, FENG Ling-zhi. State-of-the-art of Numerical Simulation In Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 89-92. |
[9] | ZHANG Xian-hui, TAN Chang-ying, CHEN Pei-yin. Numerical Simulation of Hydrogen Diffusion in Welded Joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 51-54. |
[10] | Wang Jianhua, Zhong Xiaomin, Qi Xinhai. 3-D numerical simulation of deformations in pipe-plate joint with holes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (3): 140-145. |
1. |
李仲瀚,刘高飞,李诗翰,王协彬,郝世杰. 电弧增材制造NiTi形状记忆合金研究进展. 材料工程. 2025(05): 103-118 .
![]() | |
2. |
贾文静,何博,兰亮,庄祎豪. NiTi基形状记忆合金增材制造技术研究进展. 热处理. 2023(02): 1-7 .
![]() | |
3. |
吴随松,郭纯,刘武猛,营梦,李云. ER316L不锈钢电弧增材制造的组织与性能分析. 新余学院学报. 2023(02): 10-18 .
![]() | |
4. |
武晓娟,陈文龙,张小兵,刘丽娟,陈小松,索亮. 形状记忆合金在非含能分离连接装置中的应用进展. 科技导报. 2023(13): 89-99 .
![]() | |
5. |
柯文超,张康,周乃迅,陈文畅,陈龙,庞博文,曾志. NiTi-Cu异种材料激光微连接机理及元素分布. 焊接学报. 2023(12): 21-27+138 .
![]() |