Advanced Search
WANG Han, CHEN Minghe, XIE Lansheng, FENG Rui, OUYANG Jindong. Transient liquid-phase diffusion bonding of magnesium/aluminum dissimilar alloys by assisted pulsed current[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 73-80. DOI: 10.12073/j.hjxb.20240304001
Citation: WANG Han, CHEN Minghe, XIE Lansheng, FENG Rui, OUYANG Jindong. Transient liquid-phase diffusion bonding of magnesium/aluminum dissimilar alloys by assisted pulsed current[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 73-80. DOI: 10.12073/j.hjxb.20240304001

Transient liquid-phase diffusion bonding of magnesium/aluminum dissimilar alloys by assisted pulsed current

More Information
  • Received Date: March 03, 2024
  • Available Online: May 06, 2025
  • The diffusion bonding of AZ31B magnesium alloy and 7075 aluminum alloy with Zn as the intermediate layer was achieved by using the assisted pulsed current-based TLP diffusion bonding technology. The influence of diverse surface treatment methods and processing parameters on the strength of the joints was investigated. The microstructure and morphology of the joint interfaces, the distribution of the elements, and the types of the phases at the welded joints under the assistance of pulsed current were observed, and the reasons affecting the joint strength were analyzed at the microscopic level. The results demonstrate that a welded joint exhibiting a strength of 16.28 MPa can be achieved at 380 °C, combined with conditions of 40 minutes of heat preservation, 15 minutes of pressure holding, and a pulse mode of (10 ms:10 ms). However, under the action of pulsed current, the metal atoms will accelerate the diffusion, while the intermediate liquid phase region will accelerate the diffusion rate of the atoms. This, in turn, produces IMC brittle layers such as Al5Mg11Zn4 and Al12Mg17, thus reducing the shear strength of the joint. Consequently, it is necessary to incorporate a suitable intermediate layer that functions as a “barrier” and Zn foil composite intermediate layer, thereby enhancing the weld strength.

  • [1]
    BAI S, FANG G, JIANG B. An extrusion-welding criterion of magnesium alloy considering interfacial void shrinkage driven by plastic deformation and atomic diffusion[J]. Materials & Design, 2022, 222: 111107.
    [2]
    李永兵, 李亚庭, 楼铭, 等. 轿车车身轻量化及其对连接技术的挑战[J]. 机械工程学报, 2012, 48(18): 44 − 54 doi: 10.3901/JME.2012.18.044

    LI Yongbing, LI Yating, LOU Ming, et al. Lightweighting of car body and its challenge to joining technology[J]. Journal of Mechanical Engineering, 2012, 48(18): 44 − 54. doi: 10.3901/JME.2012.18.044
    [3]
    王小伟, 张斌, 曾如川, 等. 铝合金 VPPAW 穿孔焊接匙孔闭合处的微观组织与力学性能[J]. 焊接学报, 2024, 45(3): 1 − 6

    WANG Xiaowei, ZHANG Bin, ZENG Ruchuan, et al. Microstructure and mechanical properties of aluminium alloy VPPAW pierce-through welded keyhole closures[J]. Transactions of the China Welding Institution, 2024, 45(3): 1 − 6.
    [4]
    PENG H, CHEN D L, GUO S F, et al. Dissimilar ultrasonic spot welding of rare-earth containing ZEK100 magnesium-to-aluminum alloy with a zinc interlayer: Microstructural evolution and mechanical properties[J]. Journal of Manufacturing Processes, 2023, 92: 422 − 434. doi: 10.1016/j.jmapro.2023.03.014
    [5]
    SHANG Y, SONG H, ZHANG W, et al. Analysis of liquid–solid interface bonding behaviour of 7075 aluminium alloy/SiCp reinforced aluminium base alloy[J]. Journal of Materials Research and Technology, 2023, 24: 5971 − 5979. doi: 10.1016/j.jmrt.2023.04.175
    [6]
    徐光霈, 魏耀光, 冉洸奇, 等. 2219/5A06 异种铝合金脉冲 VP-TIG 焊工艺[J]. 焊接学报, 2024, 45(2): 67 − 74 doi: 10.12073/j.hjxb.20230326001

    XU Guangpei, WEI Yaoguang, RAN Guangqi, et al. Pulsed VP-TIG welding of 2219/5A06 dissimilar aluminium alloys[J]. Transactions of the China Welding Institution, 2024, 45(2): 67 − 74. doi: 10.12073/j.hjxb.20230326001
    [7]
    邹阳帆, 李文亚, 褚强, 等. 焊接速度对 BT-FSW 2219 铝合金接头流动行为及组织与力学性能影响分析[J]. 焊接学报, 2022, 43(11): 56 − 62. doi: 10.12073/j.hjxb.20220706002

    ZOU Yangfan, LI Wenya, CHU Qiang, et al. Effect of welding speed on flow behaviour and organisational and mechanical properties of BT-FSW 2219 aluminium alloy joints[J]. Transactions of the China Welding Institution, 2022, 43(11): 56 − 62. doi: 10.12073/j.hjxb.20220706002
    [8]
    HAJJARI E, DIVANDARI M, RAZAVI S H, et al. Dissimilar joining of Al/Mg light metals by compound casting process[J]. Journal of Materials Science, 2011, 46: 6491 − 6499. doi: 10.1007/s10853-011-5595-4
    [9]
    AZIZI A, ALIMARDAN H. Effect of welding temperature and duration on properties of 7075 Al to AZ31B Mg diffusion bonded joint[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1): 85 − 92. doi: 10.1016/S1003-6326(16)64091-8
    [10]
    王贯盈, 孙卓彬, 梁永梅, 等. 高密度脉冲电流处理对 6N01 铝合金组织和性能的影响[J]. 热加工工艺, 2023, 52(8): 54 − 59.

    WANG Guanying, SUN Zhuobin, LIANG Yongmei, et al. Effects of high-density pulsed current treatment on the organisation and properties of 6N01 aluminium alloy[J]. Hot Working Technology, 2023, 52(8): 54 − 59.
    [11]
    魏陈阳, 周全, 陈乐平, 等. 瞬时脉冲电流对冷轧 AZ31 镁合金组织与力学性能的影响[J]. 特种铸造及有色合金, 2022, 42(10): 1296 − 1300.

    WEI Chenyang, ZHOU Quan, CHEN Leping, et al. Effects of instantaneous pulsed current on the organisation and mechanical properties of cold-rolled AZ31 magnesium alloy[J]. Special Casting and Nonferrous Alloys, 2022, 42(10): 1296 − 1300.
    [12]
    张婷婷, 许振波, 王艳, 等. 高频脉冲电流辅助镁/铝合金一步轧焊复合板制备及界面接合机理[J]. 机械工程学报, 2024, 60(4): 305 − 315.

    ZHANG Tingting, XU Zhenbo, WANG Yan, et al. Preparation of magnesium/aluminium alloy one-step roll-welded composite plates and interfacial bonding mechanism assisted by high-frequency pulsed current[J]. Journal of Mechanical Engineering, 2024, 60(4): 305 − 315.
    [13]
    CONRAD H. Effects of electric current on solid state phase transformations in metals[J]. Materials Science and Engineering: A, 2000, 287(2): 227 − 237. doi: 10.1016/S0921-5093(00)00780-2
    [14]
    CHEN H, ZHU Z, ZHU Y, et al. Solid-state welding of aluminum to magnesium alloys: A review[J]. Metals, 2023, 13(8): 1410. doi: 10.3390/ma16113938
    [15]
    LIU D G, MENG L, RUAN C F, et al. Interfacial microstructure and thermal shock resistance of diffusion bonding ODS-W and molybdenum alloy by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials, 2022, 107: 105913. doi: 10.1016/j.ijrmhm.2022.105913
  • Related Articles

    [1]XU Cheng, DONG Shihao, OU Zhengyu, HAN Zandong. Defect recognition of circumferential welds of pipelines in TOFD images based on YOLOv5[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 22-31. DOI: 10.12073/j.hjxb.20240115001
    [2]KONG Hua, ZHAO Zhenjia, ZOU Jianglin, WANG Zi, HUANG Zehong. The influence of laser-induced plume in the keyhole on the welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 20-26. DOI: 10.12073/j.hjxb.20220530001
    [3]HU Dan, LYU Bo, WANG Jingjing, GAO Xiangdong. Study on HOG-SVM detection method of weld surface defects using laser visual sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 57-62, 70. DOI: 10.12073/j.hjxb.20211231001
    [4]XIAO Sizhe, LIU Zhenguo, YAN Zhihong, LI Min, HUANG Jiyuan. Defect generation of small sample laser welding based on generative adversarial network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 43-48. DOI: 10.12073/j.hjxb.20220429003
    [5]HUANG Ruisheng, YANG Yicheng, JIANG Bao, NIE Xin, WANG Ziran. Analysis of welding characteristics of ultra-high power laser-arc hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 73-77,96. DOI: 10.12073/j.hjxb.2019400316
    [6]XU Kunshan, QIU Xingqi, JIANG Hui, WEI Renchao, ZHONG Junmin, . Analysis of magnetic memory signal of 20# steel welding defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 13-16,21.
    [7]SONG Jiaqiang, XIAO Jun, ZHANG Guangjun, WU Lin. Numerical simulation of free metal transfer of low current CO2 arc welding based on Surface Evolver[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 75-78,98.
    [8]LIU Xi. Fatigue reliability evaluation for welding construction containing welding defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 89-92,96.
    [9]WANG Ya-rong, ZHANG Zhong-dian. Defects in joint for resistance spot welding of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 9-12.
    [10]Liu Dezhen, Wei Xing, Zhou Yanhua. Ultrasonic C Scanning Image of Weld Defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (2): 77-83.
  • Cited by

    Periodical cited type(1)

    1. 陆巍巍,陈晨曦,徐港来,葛金波,温业勇. 动力电池连接片激光焊接虚焊原因分析与改善. 机械制造文摘(焊接分册). 2024(02): 19-23 .

    Other cited types(1)

Catalog

    Article views (43) PDF downloads (9) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return