Citation: | SHEN Kexin, ZHANG Sicong, ZHAO Yue, LI Quan, WAN Zhandong, WU Aiping. Microstructure evolution of 2195 Al-Li alloy friction stir welded joint and enhancing performance by laser shock peening[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 19-25. DOI: 10.12073/j.hjxb.20240226002 |
To investigate the microstructure and mechanical properties of friction stir welding (FSW) joints of 2195 aluminum-lithium alloy and attempt to improve them, 6.5 mm thick 2195-T8 aluminum-lithium alloy test plates were welded using different parameters. The microstructure evolution of different zones of the joints was investigated using OM, EBSD, TEM and other analytical techniques. The mechanical properties including microhardness and tensile properties of the joints were tested and digital image correlation (DIC) was applied. The results indicate that FSW of 2195-T8 aluminum-lithium alloy can reliably produce well-formed joints within the tested parameter range, with a strength coefficient of 70% and a fracture elongation of 7%. T1 and θ' completely dissolved in the weld nugget zone while β'/δ' was formed. Strain concentration occurred in the weld nugget and shoulder affected zones during tensile testing. After double-sided laser shock peening (LSP), the yield strength of the joint increased by 51 MPa, and the fracture path shifted from the weld nugget zone to the outer side of the thermal-mechanical affected zone. The new fracture location corresponded to the region of lowest hardness as determined by hardness testing.
[1] |
AHMED M M Z, EL-SAYED Seleman M M, FYDRYCH D, et al. Friction stir welding of aluminum in the aerospace industry: The current progress and state-of-the-art review[J]. Materials, 2023, 16: 2971. doi: 10.3390/ma16082971
|
[2] |
YANG Y, BI J, LIU H, et al. Research progress on the microstructure and mechanical properties of friction stir welded Al-Li alloy joints[J]. Journal of Manufacturing Progress, 2022, 82: 230 − 244. doi: 10.1016/j.jmapro.2022.07.067
|
[3] |
李充, 田亚林, 齐振国, 等. 6082-T6铝合金无减薄搅拌摩擦焊接头组织与性能[J]. 焊接学报, 2022, 43(6): 102 − 107. doi: 10.12073/j.hjxb.20220104001
LI Chong, TIAN Yalin, QI Zhenguo, et al. Microstructure and mechanical properties of non-weld-thinning friction stir welded 6082-T6 aluminum alloy joints[J]. Transactions of the China Welding Institution, 2022, 43(6): 102 − 107. doi: 10.12073/j.hjxb.20220104001
|
[4] |
FONDA R W, BINGERT J F. Precipitation and grain refinement in a 2195 Al friction stir weld[J]. Metallurgical and Materials Transactions A, 2006, 37(12): 3593 − 3604. doi: 10.1007/s11661-006-1054-2
|
[5] |
陈永来, 李劲风, 张绪虎, 等. 2195铝锂合金摩擦搅拌焊接头组织[J]. 中国有色金属学报, 2016, 26(5): 964 − 972.
CHEN Yonglai, LI Jinfeng, ZHANG Xuhu, et al. Structure of friction-stir welding joint of 2195 Al-Li alloy[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(5): 964 − 972.
|
[6] |
戴翔, 石磊, 武传松, 等. 2195-T6铝锂合金搅拌摩擦焊接头微观组织结构与力学性能[J]. 焊接学报, 2022, 43(6): 25 − 34. doi: 10.12073/j.hjxb.20210524002
DAI Xiang, SHI Lei, WU Chuansong, et al. Microstructure and mechanical properties of 2195-T6 Al-Li alloy joint prepared by friction stir welding[J]. Transactions of the China Welding Institution, 2022, 43(6): 25 − 34. doi: 10.12073/j.hjxb.20210524002
|
[7] |
ZHANG J, FENG X, HUANG H, et al. Effects of welding parameters and post-heat treatment on mechanical properties of friction stir welded AA2195-T8 Al-Li alloy[J]. Journal of Materials Science & Technology, 2018, 34(1): 219 − 227.
|
[8] |
MA Y E, XIA Z C, JIANG R R, et al. Effect of welding parameters on mechanical and fatigue properties of friction stir welded 2198-T8 aluminum-lithium alloy joints[J]. Engineering Fracture Mechanics, 2013, 114: 1 − 11. doi: 10.1016/j.engfracmech.2013.10.010
|
[9] |
HAJJIOUI E A, BOUCHAÂLA K, FAQIR M, et al. A review of manufacturing processes, mechanical properties and precipitations for aluminum lithium alloys used in aeronautic applications[J]. Heliyon, 2023, 9(2): e12565.
|
[10] |
GU C, YANG X, TANG W, et al. Texture features and strengthening mechanisms in welding nugget zone of SSFSWed thick-plate Al-Li alloy joint[J]. Materials Science & Engineering A, 2022, 848: 143459.
|
[11] |
FONDA R W, BINGERT J F. Microstructural evolution in the heat-affected zone of a friction stir weld[J]. Metallurgical & Materials Transactions A, 2004, 35(5): 1487 − 1499.
|
[12] |
王雷, 王惠苗, 马方园, 等. 2195-T8铝锂合金搅拌摩擦焊接头组织与力学性能[J]. 焊接, 2019(3): 24 − 27. doi: 10.12073/j.hj.20181016006
WANG Lei, WANG Huimiao, MA Fangyuan, et al. Microstructure and properties of 2195 Al-Li alloy welded joints by friction stir welding[J]. Welding & Joining, 2019(3): 24 − 27. doi: 10.12073/j.hj.20181016006
|
[13] |
TAO Y, NI D R, XIAO B L, et al. Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al-Li alloy joints[J]. Materials Science & Engineering: A, 2017, 693(May2): 1 − 13.
|
[14] |
WANG Z L, WANG B B, ZHANG Z, et al. A feasible operational parameter window for enhancement of welding speed in friction stir welding of 2195-T8 Al–Li alloy[J]. Science and Technology of Welding and Joining, 2023, 28(8): 679 − 688. doi: 10.1080/13621718.2023.2202039
|
[15] |
TAO Y, ZHANG Z, XUE P, et al. Effect of post weld artificial aging and water cooling on microstructure and mechanical properties of friction stir welded 2198-T8 Al-Li joints[J]. Journal of Materials Science & Technology, 2022, 123: 92 − 112.
|
[16] |
WEN F, LONG Z, XING Z, et al. The effect of laser shock peening on very high cycle fatigue properties of laser welded 2A60 aluminum alloy joints[J]. Engineering Fracture Mechanics, 2023, 290: 109537. doi: 10.1016/j.engfracmech.2023.109537
|
[17] |
WAN Z, GUO W, JIA Q, et al. Effects of laser shock peening on microstructure and mechanical properties of TIG welded alloy 600 joints[J]. Material Science and Engineering: A, 2021, 808: 140914. doi: 10.1016/j.msea.2021.140914
|
[18] |
YU P, WU C, SHI L. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates[J]. Acta Materialia, 2021, 207: 116692. doi: 10.1016/j.actamat.2021.116692
|
[19] |
SHUKLA A, BAESLACK W. Study of microstructural evolution in friction-stir welded thin-sheet Al–Cu–Li alloy using transmission-electron microscopy[J/OL]. Scripta Materialia, 2007, 56(6): 513 − 516.
|
[20] |
OOSTERKAMP A, OOSTERKAMP L D, NORDEIDE A. ‘Kissing Bond' phenomena in solid-state welds of aluminum alloys[J]. Welding Journal, 2004, 83(8): 225s − 231s.
|
[21] |
TAYON W A, DOMACK M S, HOFFMAN E K, et al. Texture evolution within the theromechanically affected zone of an Al-Li alloy 2195 friction stir weld[J]. Metallurgy and Materials Transactions: A, 2013, 44(11): 4906 − 4913.
|
[1] | DAI Xinxin, GAO Xiangdong, ZHENG Qiaoqiao, JI Yukun. A method of fuzzy clustering identification for weld defects by magneto-optical imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 54-57. DOI: 10.12073/j.hjxb.20200525001 |
[2] | GAO Xiangdong, LIANG Jianbin, LIU Guiqian, ZHANG Yanxi. Identification of high-power fiber laser welding penetration based on fuzzy clustering algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 22-25. DOI: 10.12073/j.hjxb.20170505 |
[3] | WANG Xuyou, SUN Qian, WANG Wei, Li Xiaoyu. Study on the changing ruler of plasma in laser welding and the quick testing method of blowhole defects——integral analysis method for signals detection[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 45-48. |
[4] | TANG Zhengkui, DONG Junhui, ZHANG Yongzhi, HOU Jijun. Prediction of mechanical properties of welding joints by hybrid cluster fuzzy RBF neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 105-108. |
[5] | XIA Weisheng, YANG Yunzhen, ZHANG Haiou, WANG Guilan. Data mining technology and intelligent control strategy in plasma spraying process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 33-36. |
[6] | LI Zhiyong, WANG Wei, WANG Xuyou, LI Huan. Analysis of laser-MAG hybrid welding plasma radiation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 21-24,28. |
[7] | BAI Yan, GAO Hongming, Lu Hao, Shi Lei. Analysis of plasma-MIG arc signal based on LabVIEW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 59-62. |
[8] | WANG Chun-ming, HU Lun-ji, HU Xi-yuan, DU Han-bin. Measurement and analysis of plasma optic signal during laser welding of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 83-86,90. |
[9] | WANG Chun-ming, YU Fu-lin, DUAN Ai-qin, HU Lun-jin. Relationship Between Penetration Depth and Plasma Optic Signal During Partial-Penetration Laser Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 45-48,56. |
[10] | Wang Jialing, Pan Jiluan. A STUDY OF TECHNOLOGICAL STABILITY OF COVERED STAINLESS STEEL ELECTRODES BY FUZZY CLUSTER ANALYSIS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (1): 44-50. |