Advanced Search
PAN Xiaoqian, LIU Pengpeng, LUO Lin, BAI Qingwei, QU Miaojin, WANG Xiaoling, LIU Shengxiang. Research progress on the improvement of electrode lifespan of spot welding for aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 130-144. DOI: 10.12073/j.hjxb.20240218001
Citation: PAN Xiaoqian, LIU Pengpeng, LUO Lin, BAI Qingwei, QU Miaojin, WANG Xiaoling, LIU Shengxiang. Research progress on the improvement of electrode lifespan of spot welding for aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 130-144. DOI: 10.12073/j.hjxb.20240218001

Research progress on the improvement of electrode lifespan of spot welding for aluminum alloy

More Information
  • Received Date: February 17, 2024
  • Available Online: May 06, 2025
  • Resistance spot welding (RSW) of aluminum alloys is one of the critical welding processes in the manufacturing of new energy vehicles, with widespread applications and significant importance. However, severe electrode wear and a high frequency of reconditioning are the main challenges for RSW of aluminum sheets. These issues not only lead to increased manufacturing costs but also affect production efficiency, becoming a major factor constraining production pace. Due to the high thermal conductivity and good electrical conductivity of aluminum alloys, RSW of aluminum typically employs high current and short-time, which cause severe electrode burning under high temperature and pressure. Additionally, the high-melting-point alumina film on the surface of the aluminum sheet is detrimental to the optimal bonding between the electrode and the aluminum sheet. Therefore, reducing electrode wear in aluminum RSW and extending the service life of electrode caps are urgent problems requiring solutions. The failure modes and mechanisms of electrodes in aluminum RSW are reviewed. The technical approaches to improve the lifespan of aluminum RSW electrodes are systematically discussed from the perspectives of electrode materials, electrode surface modification, electrode structure design, aluminum sheet surface treatment, and welding processes. It provides important guidance and reference for related producers and users.

  • [1]
    王敏. 电阻焊在汽车工业中的应用[J]. 电焊机, 2003, 33(1): 1 − 6. doi: 10.3969/j.issn.1001-2303.2003.01.002

    WANG Min. Application of resistance welding in automobile industry[J]. Electric Welding Machine, 2003, 33(1): 1 − 6. doi: 10.3969/j.issn.1001-2303.2003.01.002
    [2]
    WANG R, ZHANG S, HU Y, et al. Effects of welding current on microstructure evolution and mechanical behavior of WC-Co/X32 steel joints by resistance spot welding[J]. International Journal of Refractory Metals and Hard Materials, 2025, 128: 107048. doi: 10.1016/j.ijrmhm.2025.107048
    [3]
    MERMER E, TAYLAN E, EYLEN E, et al. A comparative study on microstructure and hardness properties of Inconel 625 alloy by resistance spot and seam welding methods[J]. Materials Letters, 2025, 386: 138220. doi: 10.1016/j.matlet.2025.138220
    [4]
    WEI F, WANG Y, YIN Q, et al. Optimizing electrode combinations to improve welding current density distribution and intermetallic layer morphology growth for resistance spot welding of aluminum alloys to steels[J]. Journal of Materials Engineering and Performance, 2024(13): 1 − 12.
    [5]
    GAO C Y, DONG X B, YANG Y H, et al. Research progress, application and development of high performance 6000 series aluminum alloys for new energy vehicles[J]. Journal of Materials Research and Technology, 2024, 32: 1868 − 1900.
    [6]
    MAJUMDAR S, SINHA A, DAS A, et al. An insight view of evolution of advanced aluminum alloy for aerospace and automotive industry: current status and future prospects[J]. Journal of the Institution of Engineers (India), 2024(Series D): 1 − 18.
    [7]
    EJTAK T, SHYAM A, BLAU P, et al. Additively manufactured and cast high-temperature aluminum alloys for electric vehicle brake rotor application[J]. Wear, 2025(570): 205961.
    [8]
    FAN H, HU J, WANG Y, et al. A review of laser additive manufacturing (LAM) aluminum alloys: Methods, microstructures and mechanical properties[J]. Optics and Laser Technology, 2024, 175: 110722.
    [9]
    吴卫枫, 鲁厚国. 铝合金电阻点焊技术研究[J]. 汽车制造业, 2003, 3: 46 − 48.

    WU Weifeng, LU Houguo. Research on resistance spot welding technology of aluminum alloy[J]. Automotive Industry, 2003, 3: 46 − 48.
    [10]
    郑强, 陈康华, 刘红卫, 等. 浅谈铝合金的焊接[J]. 铝加工, 2003, 26(5): 49 − 50. doi: 10.3969/j.issn.1005-4898.2003.05.016

    ZHENG Qiang, CHEN Kanghua, LIU Weihong, et al. Discussion on welding of aluminum alloy[J]. Aluminum Processing, 2003, 26(5): 49 − 50 doi: 10.3969/j.issn.1005-4898.2003.05.016
    [11]
    王艳俊. 轻量化汽车车身铝合金的电阻点焊研究[D]. 南昌: 南昌大学, 2017.

    WANG Yanjun. Resistance spot welding of aluminium alloy for lightweight vehicle body structure[D]. Nanchang: Nanchang University, 2017.
    [12]
    袁波. 车身用铝合金的电阻点焊工艺研究[D]. 合肥: 合肥工业大学, 2019.

    YUAN Bo. Research on resistance spot welding technology of aluminum alloy for automobile body[D]. Hefei: Hefei University of Technology, 2019.
    [13]
    ZHANG A, LI Y. Thermal conductivity of aluminum alloys—A review[J]. Materials, 2023, 16(8): 2972. doi: 10.3390/ma16082972
    [14]
    LUNN F K, APELIAN D. Thermal and electrical conductivity of aluminum alloys: fundamentals, structure-property relationships, and pathways to enhance conductivity[J]. Materials Science & Engineering A, 2025, 924: 147766.
    [15]
    钟丽慧, 韩立军, 郭院波. 车身铝板电阻点焊技术发展趋势与分析[J]. 电焊机, 2003, 50(6): 1 − 9. doi: 10.3969/j.issn.1001-2303.2003.06.002

    ZHONG Lihui, HAN Lijun, GUO Yuanbo. Development trend and analysis of resistance spot welding technology for aluminum plate of vehicle body[J]. Electric Welding Machine, 2003, 50(6): 1 − 9. doi: 10.3969/j.issn.1001-2303.2003.06.002
    [16]
    FUKUMOTO S, LUM I, BIRO E, et al. Effects of electrode degradation on electrode life in resistance spot welding of aluminum alloy 5182[J]. Welding Journal, 2003(11): 307s − 312s.
    [17]
    WILLIAMS N T. Suggested topics for future research in resistance welding[J]. Welding in the World, 1984(1/2): 28 − 34.
    [18]
    STEFAN H, MARTIN B, JOHANNES K, et al. Electrode wear investigation of aluminium spot welding by motion overlay[J]. The International Journal of Advanced Manufacturing Technology, 2022, 123(3-4): 749 − 760. doi: 10.1007/s00170-022-10157-8
    [19]
    PARK G H, KUMAR D, PARK S K, et al. Electrode life evaluation for varied electrode material composition and geometry in resistance spot welding of aluminum alloys[J]. Welding in the World, 2024, 68(10): 2701 − 2712.
    [20]
    刘丹. 合金点焊电极的延寿技术研究[D]. 天津: 天津大学, 2006.

    LIU Dan. The study on Prolonging the electrode life of aluminum alloy spot welding[D]. Tianjin: Tianjin University, 2006.
    [21]
    徐梅. 点焊铝合金时点焊电极磨损研究[D]. 浙江: 浙江大学, 2003.

    XU Mei. Research on electrode wear during spot welding of aluminum alloy[D]. Zhejiang: Zhejiang University, 2003
    [22]
    刘丹, 王惜宝, 罗震, 等. 铝合金表面氧化膜对点焊电极磨损的影响[J]. 焊接技术, 2005, 34(5): 18 − 20. doi: 10.3969/j.issn.1002-025X.2005.05.008

    LIU Dan, WANG Xibao, LUO Zhen, et al. Effect of aluminium alloy outer oxide films on the loss of electrode during spot welding[J]. Welding Technology, 2005, 34(5): 18 − 20. doi: 10.3969/j.issn.1002-025X.2005.05.008
    [23]
    RASHID B M, FUKUMOTO S, MEDLEY J B. Influence of lubricants on electrode life in resistance spot welding of aluminum alloys[J]. Weld Research, 2007, 86(3): 62 − 70.
    [24]
    BOOMER D R, HUNTER J A, CASTLE D R. A new approach for robust high productivity resistance spot welding of aluminium[J]. SAE Transactions, 2003(112): 280 − 292.
    [25]
    BENETEAU D J, BENETEAU M J. Resistance spot welding of metal, particularly aluminum: US, 5449878[P]. 1995−09−12.
    [26]
    赵志方. 高强度高导电Cu-Cr-Zr合金性能研究[D]. 沈阳: 沈阳大学, 2018.

    ZHAO Zhifang. Study on the performance of high strength and high conductivity Cu-Cr-Zr alloy[D]. Shenyang: Shenyang University, 2018.
    [27]
    王伟阳, 肖柱, 雷前, 等. 氧化物弥散强化铜合金的研究现状[J]. 粉末冶金材料科学与工程, 2021, 26(6): 492 − 499.

    WANG Weiyang, XIAO Zhu, LEI Qian, et al. Research progress of oxide dispersion strengthening copper alloys[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(6): 492 − 499.
    [28]
    代雪琴, 贾淑果, 范俊玲, 等. 高强高导铜合金的强化机理与研究热点[J]. 材料热处理学报, 42(10): 18-26.

    DAI Xueqin, JIA Shuguo, FAN Junlin, et al. Strengthening mechanism and research focus of high strength and high conductivity copper alloy[J]. Transactions of Materials and Heat Treatment, 42(10): 18-26.
    [29]
    胡芳怡, 郑哲帅, 郑必长, 等. 析出型高性能铜合金的研究进展和展望[J]. 兵器材料科学与工程, 2022, 45(5): 189 − 196.

    HU Fangyi, ZHENG Zheshuai, ZHENG Bichang, et al. Progress and prospect in high-performance copper alloys dominated by precipitation processing[J]. Ordnance Material Science and Engineering, 2022, 45(5): 189 − 196.
    [30]
    慕思国. 高强高导Cu-Cr-Zr系合金制备新工艺及理论研究[D]. 长沙: 中南大学, 2008.

    MU Siguo. Study on technology and theory preparing high strength and high conductivity Cu-Cr-Zr alloys[D]. Changsha: Zhongnan University, 2008.
    [31]
    韩胜利, 田保红, 刘平. 点焊电极用弥散强化铜基复合材料的进展[J]. 河南科技大学学报(自然科学版), 2003, 24(4): 16 − 19.

    HAN Shengli, TIAN Baohong, LIU Ping. Development of oxide dispersion-strengthened copper-based composites for electrode of spot welding[J]. Journal of Henan University of Science and Technology (Natural Science), 2003, 24(4): 16 − 19.
    [32]
    YANG H Y, MA Z C, LEI C H, et al. High strength and high conductivity Cu alloys: A review[J]. Science China (Technological Sciences), 2020, 63(12): 41 − 53.
    [33]
    王俊豪. 高强高导CuCrZr合金的制备与组织性能的研究[D]. 河北: 燕山大学, 2021.

    WANG Junhao. Investigation on preparation and microstructure and properties of high strength and high conductivity CuCrZr alloys[D]. Hebei: Yanshan University, 2021.
    [34]
    HAN S L, QIN X D, CAI Y X, et al. Properties and fabrication of alumina dispersion strengthened copper alloy with high softening temperature[C]// Materials Science Forum, 2013: 425-431.
    [35]
    韩胜利, 蔡一湘, 秦晓东, 等. 高强高导高软化温度Al2O3p/Cu合金的制备及研究进展[J]. 材料导报, 27(1): 103-107.

    HAN Shengli, CAI Yixiang, QIN Xiaodong, et al. Preparation and research progress of high strength, high conductivity and high softening temperature Al2O3p/Cu alloy[J]. Material Reports, 27(1): 103-107.
    [36]
    文靖瑜. 高强高导铜合金制备方法的研究现状及应用[J]. 金属材料与冶金工程, 2017, 3: 3 − 9.

    WEN Jinyu. Study status and applications of preparation methods of high strength and high conductivity copper alloy[J]. Metal Materials and Metallurgy Engineering, 2017, 3: 3 − 9.
    [37]
    侯东健. Cu-Cr-Zr系高强高导铜合金的时效行为研究[D]. 南京: 南京理工, 2016.

    HOU Dongjian. Aging behavior of Cu-Cr-Zr copper alloy with high strength and high conductivity[D]. Nanjing: Nanjing University of Science & Technology, 2016.
    [38]
    潘振亚. 高强高导Cu-Cr-Zr合金组织和性能的研究[D]. 上海: 上海交通大学, 2015.

    PAN Zhenya. Study on microstructure and property of high-strength and high-conductivity Cu-Cr-Zr alloys[D]. Shanghai: Shanghai Jiao Tong University, 2015.
    [39]
    任树杰, 高珊, 吴志生, 等. 铝合金深冷处理现状研究[J]. 焊接, 2015(4): 10 − 14. doi: 10.3969/j.issn.1001-1382.2015.07.003

    REN Shujie, GAO Shan, WU Zhisheng, et al. Study status of deep cryogenic treatment of aluminum alloys[J]. Welding & Joining, 2015(4): 10 − 14. doi: 10.3969/j.issn.1001-1382.2015.07.003
    [40]
    吴志生, 单平胡, 胡绳荪, 等. 深冷处理的铝合金点焊电极寿命研究[J]. 机械工程学报, 2005, 41(3): 146 − 150. doi: 10.3321/j.issn:0577-6686.2005.03.027

    WU Zhisheng, SHAN Pinghu, HU Shengsun, et al. Study on deep cryogenic treatment electrode life for spot welding aluminum alloy[J]. Chinese Journal of Mechanical Engineering, 2005, 41(3): 146 − 150. doi: 10.3321/j.issn:0577-6686.2005.03.027
    [41]
    刘克明, 盛晓春, 李小龙, 等. 深冷处理对冷轧铜合金组织与性能的影响[J]. 稀有金属材料与工程, 2023, 52(1): 215 − 221. doi: 10.12442/j.issn.1002-185X.20220200

    LIU Keming, SHENG Xiaochun, LI Xiaolong, et al. Influence of deep cryogenic treatments on microstructure and properties of cold rolled Cu-based slloy[J]. Rare Metal Materials and Engineering, 2023, 52(1): 215 − 221. doi: 10.12442/j.issn.1002-185X.20220200
    [42]
    刘翠荣, 闫献国, 郭建刚, 等. 深冷处理对铝合金点焊电极烧损的影响[J]. 焊接学报, 2004, 25(3): 57 − 60. doi: 10.3321/j.issn:0253-360X.2004.03.015

    LIU Cuirong, YAN Xianguo, GUO Jiangang, et al. Influence of deep cryogenic treatment on electrodes wearing for aluminum alloy spot welding[J]. Transactions of the China Welding Institution, 2004, 25(3): 57 − 60. doi: 10.3321/j.issn:0253-360X.2004.03.015
    [43]
    李旭. 深冷处理对铬锆铜点焊电极性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2006.

    LI Xu. Influence of deep crtogenic treatment on properties of electrode in coated steel spot welding[D]. Harbin: Harbin Institute of Technology, 2006.
    [44]
    王晓峰, 单平, 胡绳荪, 等. 深冷处理点焊电极的组织及力学性能研究[C]//第十一次全国焊接会议论文集, 上海, 2005.

    Wang Xiaofeng, Shan Pinghu, HU Shengsun, et al. Study on the structure and mechanical properties of deep cryogenic treatment spot welding electrodes[C]//Proceedings of the 11th National Welding Conference, Shanghai, 2005.
    [45]
    王孟君, 娄燕, 张辉, 等. 弥散强化铜电阻焊电极材料的研制[J]. 矿冶工程, 2000, 20(2): 54 − 56. doi: 10.3969/j.issn.0253-6099.2000.02.019

    WANG Mengjun, LOU Yan, ZHANG Hui, et al. A study of aluminium oxide dispersion strengthened copper electrodes[J]. Mining and Metallurgical Engineering, 2000, 20(2): 54 − 56. doi: 10.3969/j.issn.0253-6099.2000.02.019
    [46]
    美国金属学会. 金属手册[M]. 北京: 机械工业出版社, 1992.

    American Society of Metals. Metals Handbook[M]. Beijing: Mechanical Industry Press, 1992.
    [47]
    李达人. 焊接电极用抗粘结纳米氧化铝弥散铜合金研究进展[J]. 电工材料, 2019, 2: 18 − 24.

    LI Daren. Research progress of anti-bonding nano-alumina dispersed copper alloys for welding electrodes[J]. Electrical Materials, 2019, 2: 18 − 24.
    [48]
    向紫琪, 雷前, 肖柱, 等. Cu-2.7% Al2O3弥散强化铜合金的微观组织和力学性能研究[J]. 矿冶工程, 2014, 34(6): 132 − 148. doi: 10.3969/j.issn.0253-6099.2014.06.032

    XIANG Ziqi, LEI Qian, XIAO Zhu, et al. Investigation on the microstructure and mechanical properties of Cu-2.7%Al2O3 dispersion strengthened copper Alloy[J]. Mining and Metallurgical Engineering, 2014, 34(6): 132 − 148. doi: 10.3969/j.issn.0253-6099.2014.06.032
    [49]
    秦晓冬, 蔡一湘, 韩胜利, 等. Al2O3p弥散强化Cu复合材料研究进展[J]. 研究与应用, 2012, 6(4): 224 − 230.

    QIN Xiaodong, CAI Yixiang, HAN Shengli, et al. Research progress on Al2O3p/Cu composite material[J]. Materials Research and Application, 2012, 6(4): 224 − 230.
    [50]
    陆艳杰, 康志君, 崔舜, 等. 粉末冶金Cu-0.6%Al 合金内氧化析出产物的观察[J]. 粉末冶金技术, 2006, 24(4): 256 − 258. doi: 10.3321/j.issn:1001-3784.2006.04.004

    LU Yanjie, KANG Zhijun, CUI Shun, et al. Study on internal oxidation product of Cu-0.6%Al alloy prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2006, 24(4): 256 − 258. doi: 10.3321/j.issn:1001-3784.2006.04.004
    [51]
    燕鹏, 林晨光, 崔舜, 等. 弥散强化铜合金的研究与应用现状[J]. 材料导报, 2011, 25(11): 101 − 106.

    YAN Peng, LIN Chenguang, CUI Shun, et al. Present status in research and application on dispersion strengthened copper by in-situ methods[J]. Material Reports, 2011, 25(11): 101 − 106.
    [52]
    闫志巧, 陈峰, 蔡一湘. 高速压制法制备Al2O3弥散强化铜合金[J]. 中国有色金属学报, 2015, 25(3): 747 − 753.

    YAN Zhiqiao, CHEN Feng, CAI Yixiang. Al2O3 dispersion strengthened copper alloy prepared by high-velocity compaction[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(3): 747 − 753.
    [53]
    岳灿甫, 王永朝, 郭海霞, 等. 内氧化法制备Al2O3弥散强化铜合金及其组织与性能[J]. 材料导报A: 综述篇, 2007, 22(4): 7 − 10.

    YUE Canpu, WANG Yongchao, GUO Haixia, et al. Al2O3 dispersion strengthened copper alloy produced through internal oxidation and its microstructure and property[J]. Material Reports A: Reviews, 2007, 22(4): 7 − 10.
    [54]
    董仕节, 史耀武, 雷永平, 等. TiB2/Cu复合材料作电极点焊镀锌钢板的失效分析[J]. 热加工工艺, 2002, 2: 10 − 15. doi: 10.3969/j.issn.1001-3814.2002.02.004

    DONG Shijie, SHI Yaowu, LEI Yongping, et al. Analysis of electrode failure during resistance spot welding of zinc coated steel using Cu/TiB2 electrodes[J]. Hot Working Technology, 2002, 2: 10 − 15. doi: 10.3969/j.issn.1001-3814.2002.02.004
    [55]
    于汇泳, 周慧琳, 刘丹. 铝合金汽车车身点焊电极失效机理及延寿技术研究[J]. 河南工学院学报, 2020, 28(1): 55 − 59. doi: 10.3969/j.issn.1008-2093.2020.01.009

    YU Huiyong, ZHOU Huilin, LIU Dan. The research on the failure mechanism and life extension technology of spot welding electrode for aluminum alloy automobile body[J]. Journal of Henan Institute of Technology, 2020, 28(1): 55 − 59. doi: 10.3969/j.issn.1008-2093.2020.01.009
    [56]
    王涛. 镀锌钢板电阻焊涂层电极寿命及应用[D]. 江苏: 江苏科技大学, 2010.

    WANG Tao. Research on operational life span and applications of coated electrode resistance welding for galvanized steel[D]. Jiangsu: Jiangsu University of Science and Technology, 2010.
    [57]
    邹家生, 陈艳青, 沈乔. 镀锌钢板电阻焊电极材料的研究现状及进展[J]. 焊接技术, 2009, 38(9): 11 − 14. doi: 10.3969/j.issn.1002-025X.2009.09.002

    ZOU Jiasheng, CHEN Yanqing, SHEN Qiao. Research status and development of the electrode materials in resistance welding of galvanized steel sheets[J]. Welding Technology, 2009, 38(9): 11 − 14. doi: 10.3969/j.issn.1002-025X.2009.09.002
    [58]
    ZHANG G T, LI Y B, LIN Z Q. Evolution mechanism of geometry morphology for metallic bump assisted resistance spot welded (MBaRSW) joints[J]. Journal of Manufacturing Processes, 2020, 59: 432 − 443. doi: 10.1016/j.jmapro.2020.09.068
    [59]
    杜慧敏, 罗震, 敖三三. 5052铝合金电阻点焊电极形状对电极寿命的影响[J]. 上海交通大学学报, 2019, 53(6): 708 − 712.

    DU Huimin, LUO Zhen, AO Sansan. Influence of the electrode shape on service life in 5052 aluminum alloy resistance spot welding[J]. Journal of Shanghai Jiao Tong University, 2019, 53(6): 708 − 712.
    [60]
    张敏, 孔谅, 王敏. 电极形状对AA5182铝合金电阻点焊性能的影响[J]. 焊接学报, 2018, 39(4): 84 − 88.

    ZHANG Min, KONG Liang, WANG Min. Study of electrode tip morphology on the performance in resistance spot welding of AA5182 aluminum alloy[J]. Transactions of the China Welding Institution, 2018, 39(4): 84 − 88.
    [61]
    LI Y B, WEI Z Y, LI Y T, et al. Effects of cone angle of truncated electrode on heat and mass transfer in resistance spot welding[J]. International Journal of Heat and Mass Transfer, 2013, 65: 400 − 408. doi: 10.1016/j.ijheatmasstransfer.2013.06.012
    [62]
    SIGLER D R, CARLSON B E, JANIAK P. Improving aluminum resistance spot welding in automotive structures[J]. Welding Journal, 2013, 92(6): 64 − 72.
    [63]
    SIGLER D R, KARAGOULIS M J. Welding electrode with contoured face: US, 8436269[P]. 2013-05-07.
    [64]
    SIGLER D R, SCHROTH J G, KARAGOULIS M J. Electrode for spot welding: US, 8525066[P]. 2013-09-03.
    [65]
    王艳俊, 朱政强, 杨上陆, 等. 电极形貌对铝合金点焊工艺稳定性的影响[J]. 兵器材料科学与工程, 2017, 40(4): 56 − 59.

    WANG Yanjun, ZHU Zhengqiang, YANG Shanglu, et al. Influence of electrode shape on spot welding process stability of aluminum alloy[J]. Ordnance Material Science and Engineering, 2017, 40(4): 56 − 59.
    [66]
    LI B Y, DENG L, CARLSON B E, et al. Effects of electrode surface topography on aluminum resistance spot welding[J]. Welding Research, 2018, 97: 120s − 132s. doi: 10.29391/2018.97.011
    [67]
    SREENIVASULU R. Joining of dissimilar alloy sheets (Al 6063&AISI 304) during resistance spot welding process: a feasibility study for automotive industry[J]. Independent Journal of Management & Production, 2014, 5(4): 966 − 983.
    [68]
    ĽUBOŠ K, VIŇአJ, SPIŠáK E. Deltaspot as an innovative method of resistance spot welding[J]. Oficyna Wydawnicza Politechniki Rzeszowskiej, 2012, 84(3/12): 43 − 53.
    [69]
    CAO Z N, DONG P S. Innovative electrode design and FEA validation of aluminum resistance spot welding[C]// SAE World Congress, Detroit, Michigan, 2006: 1 − 5.
    [70]
    DE A, DORN L, GUPTA O P. Analysis and optimisation of electrode life for conventional and compound tip electrodes during resistance spot welding of electrogalvanised steels[J]. Science and Technology of Welding and Joining, 2000, 5(1): 49 − 57. doi: 10.1179/stw.2000.5.1.49
    [71]
    SCHULTZ H, MATTHES K J. Resistance welding: Measurement of the transition resistance in aluminum materials[C]// DVS 2929. Deustscher Verband fur Schweisstechnik e. V Dusseldorf (in German),1985: 535 − 539.
    [72]
    LEONE G L, ALTSHULLER B. Improvement on the resistance spot weldability of aluminum body sheet[J]. SAE Technical Paper Series, 1984, 840292: 1 − 7.
    [73]
    SAMUEL E, ARRINGTON Jr. Twisting electrodes improve tip life and weld quality on resistance spot welded aluminum sheet[J]. SAE Technical Paper Series, 1995, 950717: 26 − 30.
    [74]
    CRINON E, EVANS J T. The effect of surface roughness, oxide file thickness and interfacial sliding on the electrical contact resistance of aluminium[J]. Materials Science and Engineering A, 1998, 242: 121 − 128. doi: 10.1016/S0921-5093(97)00508-X
    [75]
    HANA L, THORNTONA M, BOOMERB D, et al. Effect of aluminum sheet surface conditions on feasibility and quality of resistance spot welding[J]. Journal of Materials Processing Technology, 2010, 210: 1076 − 1082. doi: 10.1016/j.jmatprotec.2010.02.019
    [76]
    THORNTON M C, NEWTON C J, KEAY B F P, et al. Some surface factors that affect the spot welding of aluminium[J]. Transactions of the IMF, 1997, 75(4): 165 − 170. doi: 10.1080/00202967.1997.11871166
    [77]
    李青松, 罗震, 李中伟, 等. 铝合金电阻点焊电极延寿技术的研究[J]. 电焊机, 2009, 39(7): 59 − 61. doi: 10.3969/j.issn.1001-2303.2009.07.015

    LI Qingsong, LUO Zhen, LI Zhongwei, et al. Research on maintaining service life technology for the electrode of Al-alloy resistance spot welding[J]. Electric Welding Machine, 2009, 39(7): 59 − 61. doi: 10.3969/j.issn.1001-2303.2009.07.015
    [78]
    周慧琳, 于汇泳, 刘丹. 铝合金工件表面涂敷涂料对点焊电极寿命的影响[J]. 焊接设备与材料, 2013, 42(5): 62 − 64.

    ZHOU Huilin, YU Huiyong, LIU Dan. Effect of surface coating of aluminum alloy workpieces on the life of spot welding electrodes[J]. Welding Equipment and Materials, 2013, 42(5): 62 − 64.
    [79]
    PATRICK E P, AUHL J R, SUN T S. Understanding the process mechanisms is key to reliable resistance spot welding aluminum auto body components[J]. SAE Technical Paper Series, 1984, 840291: 1 − 14.
    [80]
    李昊. 凸点辅助铝合金点焊工艺研究[D]. 上海: 上海交通大学, 2018.

    LI Hao. Study on bump assisted aluminum resistance spot welding[D]. Shanghai: Shanghai Jiao Tong University, 2018.
    [81]
    ZHANG G T, ZHAO H, XU X H, et al. Metallic bump assisted resistance spot welding (MBaRSW) of AA6061-T6 and bare DP590 part II-joining mechanism and joint property[J]. Journal of Manufacturing Processes, 2019, 44: 19 − 27. doi: 10.1016/j.jmapro.2019.05.041
    [82]
    ZHANG G T, ZHAO H, XU X H, et al. Metallic bump assisted resistance spot welding (MBaRSW) of AA6061-T6 and bare DP590 part I printing of metallic bump[J]. Journal of Manufacturing Processes, 2019, 44: 427 − 434. doi: 10.1016/j.jmapro.2019.05.042
    [83]
    任涛, 潘青. 阿普拉斯焊接技术及应用[J]. 电焊机, 2014, 44(2): 35 − 38.

    REN Tao, PAN Qing. Arplas welding technology and its application[J]. Electric Welding Machine, 2014, 44(2): 35 − 38.
    [84]
    李克政. 阿普拉斯焊接在白车身的应用及优势[J]. 制造与工艺, 2023(12): 156 − 158.

    LI Kezheng. Application and advantages of APRAS welding in body-in-white[J]. Manufacturing and Process, 2023(12): 156 − 158.
    [85]
    金聪聪, 黄立兵, 黄文彬, 等. 新型铝合金MIG焊接头微观组织与力学性能[J]. 焊接学报, 2024, 45(7): 74 − 82. doi: 10.12073/j.hjxb.20230717001

    JIN Congcong, HUANG Libing, HUANG Wenbin, et al. Microstructure and mechanical properties of a novel aluminum alloy MIG welded joint[J]. Transactions of the China Welding Institution, 2024, 45(7): 74 − 82. doi: 10.12073/j.hjxb.20230717001
    [86]
    张勇, 张涛, 刘宗芳, 等. 预热电流工艺在高强铝合金电阻点焊中的应用研究[C]//中国机械工程学会焊接学会第十八次全国焊接学术会议论文集-S01压力焊, 南昌, 2013, 20 − 23.

    ZHANG Yong, ZHANG Tao, LIU Zongfang, et al. Research on the application of preheating current process in resistance spot welding for high strength aluminum alloy[C]// Proceedings of the 18th National Welding Academic Conference of the Welding Society of the Chinese Mechanical Engineering Society-S01 Pressure Welding, Nanchang, 2013, 20 − 23.
    [87]
    LUO Z, AO S S, CHAO Y J, et al. Application of pre-heating to improve the consistency and quality in AA5052 resistance spot welding[J]. Journal of Materials Engineering and Performance, 2015, 24(10): 3881 − 3891. doi: 10.1007/s11665-015-1704-x
    [88]
    WILLIAMS N T, PARKER J D. Review of resistance spot welding of steel sheets-part 2, factors influencing electrode life[J]. International Materials Reviews, 2004, 49(2): 77 − 108. doi: 10.1179/095066004225010541
    [89]
    LI W. Modeling and on-line estimation of electrode wear in resistance spot welding[J]. Journal of Manufacturing Science and Engineering, 2005, 127: 709 − 717. doi: 10.1115/1.2034516
    [90]
    WADDELL W, WILLIAM N T. Control of resistance spot welded quality using multi-parameter derived algorithms for zinc coated sheets[C]// Research Report EUR 17859, Commission of European Communities, Technical Steel Research Programme, 1997: 17859.
    [91]
    吴松, 王敏, 孔谅, 等. 5052-O铝合金电阻点焊裂纹产生机理及抑制[J]. 焊接学报, 2014, 35(9): 92 − 96.

    WU Song, WANG Min, KONG Liang, et al. Mechanism and suppression of cracking in 5052-O aluminum alloy resistance spot weld[J]. Transactions of the China Welding Institution, 2014, 35(9): 92 − 96.
    [92]
    刘兴全, 张永强, 王威, 等. 多脉冲电阻点焊对镀锌高强汽车板组织性能的影响研究[C]//第十六次全国焊接学术会议论文集, 镇江, 2011, 358 − 388.

    LIU Xingquan, ZHANG Yongqiang, WANG Wei, et al. Study on the effect of multi pulse resistance spot welding on the microstructure and properties of galvanized high strength automotive sheet [C] //Proceedings of the 16th National Welding Academic Conference, Zhenjiang, 2011, 358 − 388.
    [93]
    程方杰, 单平, 廉金瑞, 等. 一种新的适合于铝合金点焊的电流控制法[J]. 汽车技术, 2002, 4: 25 − 27.

    CHENG Fangjie, SHAN Ping, LIAN Jinrui, et al. A new current control method suitable for aluminum alloy spot welding[J]. Automotive Technology, 2002, 4: 25 − 27.
  • Related Articles

    [1]WANG Zhipeng, ZHU Mingliang, XUAN Fuzhen. High cycle fatigue property and lifetime modeling of CrMoV and NiCrMoV dissimilar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 67-73. DOI: 10.12073/j.hjxb.20231205004
    [2]ZHAO Qiu, TANG Kun, LI Yinghao, WU Weiqing. Fatigue crack initiation simulation of weld toe based on the Roe-Siegmund cyclic cohesive zone model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 61-67. DOI: 10.12073/j.hjxb.20230317003
    [3]XU Le, WEN Jianfeng, TU Shandung. Numerical simulations of creep damage and crack growth in P92 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 80-88. DOI: 10.12073/j.hjxb.2019400213
    [4]HE Bolin, YE Bin, DENG Haipeng, LI Li, WEI Kang. Very high cycle fatigue properties of SMA490BW steel welded joints for train bogie[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 31-37. DOI: 10.12073/j.hjxb.2019400037
    [5]GONG Jianming, JIANG Wenchun, TANG Jianqun, TU Shantong. Numerical simulation of hydrogen diffusion in low alloy steel welded joint under wet H2S environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 5-8.
    [6]ZHANG Xian-hui, TAN Chang-ying, CHEN Pei-yin. Numerical Simulation of Hydrogen Diffusion in Welded Joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 51-54.
    [7]Liu Renpei, Dong Zujue, Wei Yanhong. Numerical Simulation Model of Stress-strain Distributions for Weld Metal Solidification Cracking in Stainless Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 238-243.
    [8]Wei Yanhong, Liu Renpei, Dong Zujue. Numerical Simulation of Temperature Fields for Weld Metal Solidification Cracking in Stainless Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 199-204.
    [9]Chen Huaining, Chen Liangshan. Effect of micro-prestrain on fatigue property of welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (3): 193-197.
    [10]Sun Dacheng, Tian Xitang, Zhu Hongguan, Yu Shengfu. Effect of mechanical heterogeneity on fatigue crack propagation in welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (3): 143-148.
  • Cited by

    Periodical cited type(8)

    1. 王磊磊,吕飞阅,高转妮,虞文军,高川云,占小红. 电弧增材制造2319铝合金交叉桁条结构微观组织与拉伸性能研究. 机械工程学报. 2023(01): 267-277 .
    2. 姚宇,张秋菊,陈宵燕,吕青,焦露. 复杂空间曲面焊接机器人自动编程系统. 焊接学报. 2023(05): 122-128+136 . 本站查看
    3. 董曼淑,朱晗,张晓超,白凯,刘龙,高洪明. 矿用链轮链窝电弧增材制造路径规划. 焊接. 2021(01): 51-55+64 .
    4. 李天旭,王天琪,李亮玉,杨壮. 典型薄壁结构件增材制造焊接路径规划优化算法. 焊接学报. 2021(02): 69-74+101-102 . 本站查看
    5. 马明亮,刘苏杭,郭纯,王树军,刘茵琪. 电弧增材制造技术的研究进展. 铸造技术. 2021(03): 231-233 .
    6. 舒凤远,牛司成,何鹏,隋少华,张小东. 高熵非晶材料及其增材制造技术研究进展. 焊接学报. 2021(09): 1-8+97 . 本站查看
    7. 杨东青,王小伟,黄勇,李晓鹏,王克鸿. 熔化极电弧增材制造18Ni马氏体钢组织和性能. 焊接学报. 2020(08): 6-9+21+97 . 本站查看
    8. 王天琪,张宏宇,耿冬寒,李亮玉,杨壮. 金属桁架结构成形工艺分析. 焊接学报. 2020(11): 25-30+98 . 本站查看

    Other cited types(6)

Catalog

    Article views (49) PDF downloads (18) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return