Citation: | ZHOU Xin, HUANG Ruisheng, LIANG Xiaomei, TENG Bin. Analysis of in-situ heat treatment on microstructure and mechanical properties by quadruple-electrode gas tungsten arc additive manufacturing of 00Cr13Ni5Mo stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 86-93. DOI: 10.12073/j.hjxb.20240202001 |
To solve the problem of anisotropy in mechanical properties of arc additive manufacturing, a four-tungsten-electrode heat source additive manufacturing is proposed. Utilize the ultra-high heat input characteristic of quadruple-electrode gas tungsten arc to conduct in-situ heat treatment on the deposited parts based 00Cr13Ni5Mo stainless steel, in order to achieve the transformation from columnar grains to equiaxed grains.The microstructure characteristics of different positions of the deposited parts are studied, and mechanical properties of the deposited parts in different directions and positions are investigated emphatically through tensile and impact tests. The results show that in-situ heat treatment can transform the microstructure of the deposited parts from columnar grains to equiaxed grains, with the average grain size reducing from 44.28 μm to 4.86 μm, significantly improving the anisotropy of the mechanical properties. The microstructure of the deposited parts consists of tempered sorbite, tempered martensite, inverted austenite, and carbide. The average hardness of the deposited parts is (279.4±10) HV10, the yield strength at room temperature is (903.7±11) MPa, and the impact energy at 0 ℃ is (207.6±10) J. In conclusion, the anisotropy of the microstructure and mechanical properties of the deposited parts is minimal. This technology offers a viable solution for improving the anisotropy of the microstructure and mechanical properties in wire arc additive manufacturing.
[1] |
Bunty T, Shiva S, Tameshwer N. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances[J]. Materials Today Communications, 2022, 31: 103739. doi: 10.1016/j.mtcomm.2022.103739
|
[2] |
Evans S I, Wang J, Qin J, et al. A review of WAAM for steel construction–manufacturing, material and geometric properties, design, and future directions[J]. Structures, 2022, 44: 1506 − 1522. doi: 10.1016/j.istruc.2022.08.084
|
[3] |
Gardner L. Metal additive manufacturing in structural engineering – review, advances, opportunities and outlook[J]. Structures, 2023, 47: 2178 − 2193. doi: 10.1016/j.istruc.2022.12.039
|
[4] |
Yuan D, Sun X, Sun L, et al. Improvement of the grain structure and mechanical properties of austenitic stainless steel fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration [J]. Materials Science & Engineering: A, 2021, 813: 141177.
|
[5] |
Anna E, Jarryd B, Nima R, et al. The influence of laser shock peening on corrosion-fatigue behaviour of wire arc additively manufactured components[J]. Surface and Coatings Technology, 2023, 456: 129262. doi: 10.1016/j.surfcoat.2023.129262
|
[6] |
Zhou S, Liu Z, Yang G, et al. Heterostructure microstructure and laves phase evolution mechanisms during inter-layer hammering hybrid directed energy deposition (DED) process[J]. Materials Science and Engineering: A, 2023, 886: 145668. doi: 10.1016/j.msea.2023.145668
|
[7] |
Colegrove P A, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling[J]. Journal of Materials Processing Technology, 2013, 213(10): 1782 − 1791. doi: 10.1016/j.jmatprotec.2013.04.012
|
[8] |
Tan C, Li R, Su J, et al. Review on field assisted metal additive manufacturing[J]. International Journal of Machine Tools and Manufacture, 2023, 189: 104032. doi: 10.1016/j.ijmachtools.2023.104032
|
[9] |
Chen Y, Zhang X, Ding D, et al. Integration of interlayer surface enhancement technologies into metal additive manufacturing: A review[J]. Journal of Materials Science & Technology, 2023, 165: 94 − 122
|
[10] |
Li Y, Wu S, Wang J, et al. Microstructure homogeneity and strength-toughness balance in submerged arc additive manufactured Mn-Ni-Mo high-strength steel by unique intrinsic heat treatment[J]. Journal of Materials Processing Technology, 2022, 307: 117682. doi: 10.1016/j.jmatprotec.2022.117682
|
[11] |
Li Y, Wu S, Li H, et al. Submerged arc additive manufacturing (SAAM) of low-carbon steel: Effect of in-situ intrinsic heat treatment (IHT) on microstructure and mechanical properties[J]. Additive Manufacturing, 2021, 46: 102124. doi: 10.1016/j.addma.2021.102124
|
[12] |
杜兵, 孙凤莲, 徐玉君, 等. 焊接方法对超低碳马氏体不锈钢焊丝熔敷金属冲击韧性的影响[J]. 焊接学报, 2014, 25(8): 1 − 4.
Du Bing, Sun Feng lian, Xu Yujun, et al. Effect of welding methods on impact toughness of ultra-low carbon martensitic stainless steel welding wire deposited metal[J]. Transactions of the China Welding Institution, 2014, 25(8): 1 − 4
|
1. |
王晨阳,刘骁,李小平,朱彬. ER5356焊丝用于7075铝合金MIG焊接头热处理性能. 材料工程. 2024(03): 149-157 .
![]() | |
2. |
罗鹏博,廖凯,胡俊,李立君,陈飞. 喷丸对7075-T651铝合金亚表面裂纹修复能力的影响. 材料热处理学报. 2023(08): 140-148 .
![]() | |
3. |
王龙权,尹天天,张岩,宋闽,张基隆,曲畅. 7xxx高强铝合金熔化焊研究进展. 焊接. 2023(08): 44-54 .
![]() | |
4. |
张铭洋,蒋熠鸣,王春明,欧阳求保,米高阳. 后热处理对激光焊接7075铝合金显微组织与力学性能影响. 焊接学报. 2022(08): 13-18+113-114 .
![]() |