Advanced Search
LYU Ke, YANG Bing, WANG Shuancheng, XIAO Shoune, YANG Guangwu, ZHU Tao. Crack propagation behavior of laser-MIG hybrid welded joints in 6005 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 82-93. DOI: 10.12073/j.hjxb.20240125004
Citation: LYU Ke, YANG Bing, WANG Shuancheng, XIAO Shoune, YANG Guangwu, ZHU Tao. Crack propagation behavior of laser-MIG hybrid welded joints in 6005 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 82-93. DOI: 10.12073/j.hjxb.20240125004

Crack propagation behavior of laser-MIG hybrid welded joints in 6005 aluminum alloy

More Information
  • Received Date: January 24, 2024
  • Available Online: April 18, 2025
  • The fatigue crack propagation behavior of laser-MIG hybrid welded joints in 6005A-T6 aluminum alloy is studied. Digital image correlation (DIC) technology is employed to capture the local displacement field near the crack tip during testing, enabling a comparative analysis of crack closure effects between welded joints and base material. The results show that the fatigue crack propagation rates in the laser-MIG hybrid weld specimens are initially comparable to those in the base material specimens but accelerate significantly in later stages. In contrast, the heat-affected zone specimens exhibit notably lower crack propagation rates. A 4% compliance offset value is selected to determine the crack opening force. All specimens follow the general trend of increasing crack closure factor U with crack propagation. Specifically, the crack closure level in the laser-MIG hybrid weld specimens first decreases and then gradually rises to that in the base material specimens, whereas the crack closure level in the heat-affected zone specimens is initially slightly lower than that in the base material specimens but exceeds that in the base material specimens in later stages without convergence. The Elber equation is applied to correct crack propagation data to eliminate the influence of crack closure on the propagation rate. However, the dispersion of crack propagation data remains largely unchanged before and after correction, indicating that crack closure effects alone cannot fully explain the fatigue crack propagation behavior of joints.

  • [1]
    ZHANG Z, HUANG M, YANG L, et al. Investigation of fatigue crack growth behavior and crack tip plastic zone characteristics in welded structures based on local displacement fields[J]. Engineering Fracture Mechanics, 2024, 308: 110375. doi: 10.1016/j.engfracmech.2024.110375
    [2]
    VERMA R P, LILA M K. A short review on aluminium alloys and welding in structural applications[J]. Materials Today, 2021, 46(20): 10687 − 10691.
    [3]
    周希孺,吴圣川,郭峰. 现代铁道车辆结构伤损形式与再制造修复技术[J]. 电焊机, 2020, 50(9): 147 − 160.

    ZHOU Xiru, WU Shengchuan, GUO Feng. Typical defects and remanufacturing & repairing technologies of modern railway vehicle components[J]. Electric Welding Machine, 2020, 50(9): 147 − 160.
    [4]
    YAN S H, NIE Y, ZHU Z T, et al. Characteristics of microstructure and fatigue resistance of hybrid fiber laser-MIG welded Al-Mg alloy joints[J]. Applied Surface Science, 2014, 298: 12 − 18.
    [5]
    NIRAULA A, REMES H, LEHTO P. Local weld geometry-based characterization of fatigue strength in laser-MAG hybrid welded joints[J]. Welding in The World, 2023, 67(6): 1527 − 1544.
    [6]
    HUANG G, LI Z H, SUN L M, et al. Fatigue crack growth behavior of 2624-T39 aluminum alloy with different grain sizes[J]. Rare Metals, 2021, 40(9): 2523 − 2529.
    [7]
    KUMAR P, SINGH A. Experimental and numerical investigations of fatigue and fracture performance of metal inert gas-welded Al-3. 4 Mg aluminium alloy[J]. Journal of The Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(9): 1 − 20.
    [8]
    周书蔚, 杨冰, 王超, 等. 机器学习法预测不同应力比6005A-T6铝合金疲劳裂纹扩展速率[J]. 中国有色金属学报, 2023, 33(8): 2416 − 2427. doi: 10.11817/j.ysxb.1004.0609.2022-43508

    ZHOU Shuwei, YANG Bing, WANG Chao, et al. Prediction of fatigue crack extension rate of 6005A-T6 aluminum alloy with different stress ratios by machine learning method[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(8): 2416 − 2427. doi: 10.11817/j.ysxb.1004.0609.2022-43508
    [9]
    ZHOU S, YANG B, LYU K, et al. Elastic-plastic simulation study on 6005a aluminum alloy crack propagation based on XFEM[J]. International Journal of Applied Mechanics, 2025, 17(1): 2450126. doi: 10.1142/S1758825124501266
    [10]
    李文瀚, 孙尧, 张浩, 等. 试验速率对6005A-T6铝合金力学性能的影响[J]. 有色金属加工, 2022, 51(3): 21 − 24. doi: 10.3969/j.issn.1671-6795.2022.03.005

    LI Wenhan, SUN Yao, ZHANG Hao, et al. Effect of test rate on mechanical properties of 6005A-T6 aluminum alloy[J]. Nonferrous Metals Processing, 2022, 51(3): 21 − 24. doi: 10.3969/j.issn.1671-6795.2022.03.005
    [11]
    WANG X, ZHU T, LU L, et al. Rate-dependent damage sequence interaction model for predicting the mechanical property of in-service aluminum alloy 6005A-T6[J]. Mechanics of Materials, 2024, 191: 104959. doi: 10.1016/j.mechmat.2024.104959
    [12]
    AQEEL M, GAUTAM J P, SHARIFF S M. Comparative study on autogenous diode laser, CO2 laser-MIG hybrid and multi-pass TIG welding of 10-mm thick Inconel 617 superalloy[J]. Materials Science and Engineering A, 2022, 856: 143967. doi: 10.1016/j.msea.2022.143967
    [13]
    罗子艺, 韩善果, 陈永城,等. 工艺参数对激光-电弧复合焊缝成形及拉伸性能的影响[J]. 材料导报, 2019, 33(13): 2146 − 2150.

    LUO Ziyi, HAN Shanguo, CHEN Yongcheng, et al. Effects of process parameters on weld formation and tensile properties of hybrid laser-arc welding[J]. Materials Reports, 2019, 33(13): 2146 − 2150.
    [14]
    MENG X, YANG S L, HUANG Y B, el al. Microstructure characterization and mechanism of fatigue crack propagation of 6082 aluminum alloy joints[J]. Materials Chemistry and Physics, 2021, 257: 123734.
    [15]
    JIAN H, WANG Y D, YANG X M, et al. Microstructure and fatigue crack growth behavior in welding joint of Al-Mg alloy[J]. Engineering Failure Analysis, 2021, 120: 105034. doi: 10.1016/j.engfailanal.2020.105034
    [16]
    ZHANG Z, YANG B, JAMES M N, et al. Evolution of residual stress at a fatigue crack tip and its influence on crack tip shielding and plasticity[J]. Journal of Materials Research and Technology, 2024, 32: 1749 − 1760. doi: 10.1016/j.jmrt.2024.08.032
    [17]
    MA M, LAI R L, QIN J , et al. Effect of weld reinforcement on tensile and fatigue properties of 5083 aluminum metal inert gas (MIG) welded joint: experiments and numerical simulations[J]. International Journal of Fatigue, 2021, 144: 106046. doi: 10.1016/j.ijfatigue.2020.106046
  • Related Articles

    [1]HAN Zhiyong, QIU Zhenzhen, SHI Wenxin, DING Kunying. High temperature oxidation and thermal shock properties of thermal barrier coating by CoCrAlY surface modification[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 19-22,28. DOI: 10.12073/j.hjxb.2019400148
    [2]LI Yajuan, DONG Yun, WANG Zhiping, LIU Shiqiang. Effect of pre-oxidation treatment on thermal shock resistance and residual stress of thermal barrier coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 37-40.
    [3]WEI Qi, LI Hui, LI Hong, ZHANG Linwei. Influence of gas shroud on property of plasma sprayed thermal barrier coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 51-54.
    [4]HAO Yunfei, TANG Weijie, WANG Hongying, CHEN Hui. Analysis of microstructure and thermal shock resistance of nanostructured zirconia thermal barrier coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 109-112.
    [5]HOU Pingjun, HUANG Guopeng, WANG Hangong, WANG Liuying. Mullite/metal composite thermal barrier coating deposited by micro-plasma spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (5): 85-88,92.
    [6]DONG Wenxing, SHI Yaowu, XIA Zhidong, LEI Yongping. Effects of Ni/P/Ce on oxidation resistance and solidification crack of SnAgCu lead free solder alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 77-80.
    [7]WANG Zhi-ping, JI Zhao-hui, LI Quan-hua, LIU Chang-jiang. Thermal fatigue of WC coatings deposited with HVOF[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 6-8.
    [8]LI Mu qin, MA Chen, TAN Wei, SHAO De chun, GUO Mian huan. Influence of additive SiO2 on stable ZrO2+8%Y2O3 coatings of thermal shock[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 59-60,64.
    [9]MIN Xue-gang, YU Xin-quan, SUN Yang-shan, PANG Huai-xin. Microstructures and Oxidation Resistance of Fe3Al Overlay by Manual Arc Surfacing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 56-58.
    [10]Li Muqin, Ma Chen, Shao Dechun, Lu Keyong, Guo Mianhuan. Influence of Additive SiO2 on Thermal Shock Resistance of Plasma-sprayed Al2O3 Coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (1): 6-11.
  • Cited by

    Periodical cited type(19)

    1. 郝晓杰,段成红,罗翔鹏,曹先堃,徐航程,朱宗涛. 不同坡口尺寸6005A铝合金激光-MIG复合焊接微观组织及力学性能研究. 中国激光. 2025(04): 39-48 .
    2. 陈超,高义皓,任柏桥,隋昕晨,傅彦. 铝合金激光–电弧复合焊接技术的研究进展. 航空制造技术. 2025(09): 47-60 .
    3. 马国龙,张志毅,毛镇东,李刚卿,韩晓辉,杨志斌. 高速列车用铝合金型材激光-MIG复合焊工艺特性和接头性能. 材料导报. 2023(12): 195-200 .
    4. 王柏霖. 铝合金焊接工艺在动车组的应用综述. 铝加工. 2023(04): 9-13 .
    5. 朱玉麒,郭前建,袁伟,王文华,李飞,杨先海. 高强度双质材料挂车轻量化关键技术综述. 山东理工大学学报(自然科学版). 2022(03): 33-37 .
    6. 赵昕,辛志彬,赵函,杨志斌. 铝合金激光-MIG复合焊气孔缺陷影响规律研究. 热加工工艺. 2022(05): 57-60 .
    7. 宋坤林,展旭和,徐良,杨海锋,崔辉. 基于固有应变法的激光复合焊车体侧墙焊接变形数值模拟. 机械制造文摘(焊接分册). 2022(02): 30-35+40 .
    8. 卢帅,晁艳普,张楚翔,岑辉,曹福来,陈良斌. 激光-TIG复合填丝焊接工艺对6061铝合金焊缝组织与硬度的影响. 制造技术与机床. 2022(12): 121-126 .
    9. 张瑜. 焊接速度对车身激光-MIG复合焊接的影响. 现代制造技术与装备. 2022(12): 120-122 .
    10. 李帅贞,毛镇东,王鹏,韩晓辉,黄诗铭,杨蔚. 不同焊丝A6082铝合金接头力学及应力腐蚀性能研究. 焊接技术. 2021(01): 73-76 .
    11. 王伟,张恒泉,朱宗涛,王晶,李洪玉,张然. 激光功率对Al/Ti激光-GMAW复合熔钎焊接头组织及力学性能的影响. 热加工工艺. 2021(05): 51-54 .
    12. 孙晓光,韩晓辉,郑自芹,李帅贞,梁景恒,张中东. 铝合金腐蚀疲劳行为研究. 兵器材料科学与工程. 2021(02): 131-136 .
    13. 董石玉,吴凡,陈东东,万祥明,邱哲生,李家奇,严继康. 铝合金激光-电弧复合焊研究进展. 云南冶金. 2021(03): 114-121 .
    14. 付娟,赵勇,邹家生,贾占君,贺宇翔. 铝合金非熔化极直流正接氦弧焊氧化膜撕裂机理. 焊接学报. 2021(12): 87-90+102 . 本站查看
    15. 宋坤林,展旭和,徐良,杨海锋,崔辉. 基于固有应变法的激光复合焊车体侧墙焊接变形数值模拟. 焊接. 2021(12): 42-47+52+65-66 .
    16. 李斌,朱勇辉,邓林,马彦龙. BS960E高强钢激光-电弧复合高速焊接接头组织及性能研究. 电焊机. 2020(05): 72-76+136-137 .
    17. 崔辉,王旭友,徐良,杨海锋,徐富家. 铝合金型材表面氧化膜对焊接接头性能及气孔率的影响. 焊接. 2020(02): 61-64+68 .
    18. 石玗,王文楷. 中厚板高效焊接技术的研究进展. 电焊机. 2020(09): 69-78 .
    19. 高增,巴现礼,杨环宇,尹聪鑫,牛济泰. 含Sc、Ce、Be的TiB_2原位增强焊丝与4047焊丝对SiCp/AlMMCs的TIG焊研究. 稀有金属材料与工程. 2020(10): 3465-3471 .

    Other cited types(17)

Catalog

    Article views (63) PDF downloads (42) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return