Citation: | HONG Yuxiang, XIE Xiangzhi, HE Xingxing, DU Dong, CHANG Baohua. Prediction of GTAW penetration state based on enhanced knowledge of dynamic morphology molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 26-34, 41. DOI: 10.12073/j.hjxb.20240115003 |
To achieve online monitoring of welding penetration status, ensure weld quality, and promote the development of robotic intelligent technology, a knowledge-enhanced prediction method for Gas Tungsten Arc Welding (GTAW) penetration status based on molten pool dynamic deformation is proposed. High-speed, high-dynamic-range industrial cameras are employed to capture molten pool images, and the DeepLabv3+ semantic segmentation model is utilized for dynamic segmentation of the molten pool to obtain precise molten pool regions. On this basis, multi-frame molten pool contour image fusion is performed to describe the dynamic deformation of the molten pool during the welding process. The fused molten pool contour images and original molten pool images are combined and input into a CNN to learn pixel-level changes in the molten pool contours at the same location, enabling the CNN to predict penetration status. Experimental results demonstrate that the CNN enhanced with molten pool dynamic deformation knowledge can accurately identify three typical weld states: partial penetration, adequate penetration, and excessive penetration, achieving a classification accuracy of 97.1% with a single-frame prediction time of 0.86 ms. Compared to deep learning methods without integration of expert knowledge on molten pool dynamic deformation features, this method exhibits higher robustness and accuracy in scenarios with limited sample data.
[1] |
周政, 王国庆, 宋建岭, 等. 2219铝合金不同气氛下TIG焊焊接接头组织性能[J]. 焊接学报, 2018, 39(7): 47 − 50. doi: 10.12073/j.hjxb.2018390173
ZHOU Zheng, WANG Guoqing, SONG Jianlin, et al. Microstructure and mechanical properties of 2219aluminum alloys TIG welding welded joints in differentshielding gases[J]. Transactions of the China Welding Institution, 2018, 39(7): 47 − 50. doi: 10.12073/j.hjxb.2018390173
|
[2] |
张志芬, 杨哲, 任文静, 等. 电弧光谱深度挖掘下的铝合金焊接过程状态检测[J]. 焊接学报, 2019, 40(1): 19 − 25. doi: 10.12073/j.hjxb.2019400005
ZHANG Zhifen, YANG Zhe, REN Wenjing, et al. Condition detection in Al alloy welding process based on deep mining of arc spectrum[J]. Transactions of the China Welding Institution, 2019, 40(1): 19 − 25. doi: 10.12073/j.hjxb.2019400005
|
[3] |
岳建锋, 龙新宇, 黄云龙, 等. 基于电弧声信号的窄间隙脉冲熔化极气体保护焊侧壁熔合状态在线识别[J]. 中国机械工工程, 2024, 35(2): 244 − 250, 259.
YUE Jianfeng, LONG Xinyu, HUANG Yunlong, et al. On-line identification of narrow gap P-GMAW sidewall fusion state based on arc acoustic signa[J]. China Mechanical Engineering, 2024, 35(2): 244 − 250, 259.
|
[4] |
PENG G, CHANG B, WANG G, et al. Vision sensing and feedback control of weld penetration in helium arc welding process[J]. Journal of Manufacturing Processes, 2021, 72: 168 − 178.
|
[5] |
肖宏, 宋建岭, 刘宪力, 等. 基于形态学算法的2219铝合金钨极氦弧焊熔池图像特征提取[J]. 宇航材料工艺, 2019, 49(1): 78 − 81. doi: 10.12044/j.issn.1007-2330.2019.01.015
XIAO Hong, SONG Jianling, LIU Xianli, et al. Image feature extraction of helium gas tungsten arc welding pool of 2219 aluminum alloy based on morphological algorithm[J]. Aerospace Materials & Technology, 2019, 49(1): 78 − 81. doi: 10.12044/j.issn.1007-2330.2019.01.015
|
[6] |
HONG Y, YANG M, CHANG B, et al. Filter-PCA-based process monitoring and defect identification during climbing helium arc welding process using DE-SVM[J]. IEEE Transactions on Industrial Electronics, 2023, 70(7): 7353 − 7362.
|
[7] |
CHEN C, LYU N, CHEN S. Welding penetration monitoring for pulsed GTAW using visual sensor based on AAM and random forests[J]. Journal of Manufacturing Processes, 2021, 63: 152 − 162.
|
[8] |
洪宇翔, 杨明轩, 都东, 等. 铝合金爬坡TIG焊熔池失稳状态的视觉检测[J]. 焊接学报, 2021, 42(10): 8 − 13.
HONG Yuxiang, YANG Mingxuan, DU Dong, et al. Unstable state vision detection of molten pool during aluminum alloy climbing-TIG welding[J]. Transactions of the China Welding Institution, 2021, 42(10): 8 − 13.
|
[9] |
马晓锋, 夏攀, 刘海生, 等. 全位置焊接熔池的深度学习检测方法[J]. 机械工程学报, 2023, 59(12): 272 − 283. doi: 10.3901/JME.2023.12.272
MA Xiaofeng, XIA Pan, LIU Haisheng, et al. Deep learning detection method of all-position welding pool[J]. Journal of Mechanical Engineering, 2023, 59(12): 272 − 283. doi: 10.3901/JME.2023.12.272
|
[10] |
CAI W, JIANG P, SHU L, et al. Real-time identification of molten pool and keyhole using a deep learning-based semantic segmentation approach in penetration status monitoring[J]. Journal of Manufacturing Processes, 2022, 76: 695 − 707.
|
[11] |
李春凯, 王嘉昕, 石玗, 等. GTAW熔池激光条纹动态行为与熔透预测方法研究[J]. 机械工程学报, 2024, 60(6): 236 − 249.
LI Chunkai, WANG Jiaxin, SHI Yu, et al. Study on the dynamic behavior of GTAW melt pool laser streak and penetration prediction method[J]. Journal of Mechanical Engineering, 2024, 60(6): 236 − 249.
|
[12] |
WANG Q, JIAO W, WANG P, et al. A tutorial on deep learning-based data analytics in manufacturing through a welding case study[J]. Journal of Manufacturing Processes, 2021, 63: 2 − 13.
|
[13] |
CHENG Y, WANG Q, JIAO W, et al. Detecting dynamic development of weld pool using machine learning from innovative composite images for adaptive welding[J]. Journal of Manufacturing Processes, 2020, 56: 908 − 915.
|
[14] |
刘秀航, 叶广文, 黄宇辉, 等. 激光-MIG复合焊根部驼峰缺陷预测[J]. 焊接学报, 2022, 43(12): 47 − 52,99. doi: 10.12073/j.hjxb.20211216003
LIU Xiuhang, YE Guangwen, HUANG Yuhui, et al. Root hump defect prediction for laser-MIG hybrid welding[J]. Transactions of the China Welding Institution, 2022, 43(12): 47 − 52,99. doi: 10.12073/j.hjxb.20211216003
|
[15] |
JIAO W, WANG Q, CHENG Y, et al. Prediction of weld penetration using dynamic weld pool arc images[J]. Welduing Journal, 2020, 99(11): 295S − 302S.
|
[16] |
GAO P, WU Z, WANG Y, et al. Method for monitoring and controlling penetration of complex groove welding based on online multi-modal data[J]. Journal of Intelligent Manufacturing, 2024, 35(3): 1247 − 1265.
|
[17] |
WU D, HU M, HUANG Y, et al. In situ monitoring and penetration prediction of plasma arc welding based on welder intelligence-enhanced deep random forest fusion[J]. Journal of Manufacturing Processes, 2021, 66: 153 − 165.
|
[18] |
LIU T, BAO J, ZHENG H, et al. Learning semantic-specific visual representation for laser welding penetration status recognition[J]. Science China Technological Sciences, 2022, 65(2): 347 − 360. doi: 10.1007/s11431-021-1848-7
|
[1] | FANG Jimi, WANG Kehong, HUANG Yong. Research on image fusion method of visible and near infrared weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 18-23. DOI: 10.12073/j.hjxb.2019400121 |
[2] | CHEN Haiyong, REN Yafei, WANG Yanan, CAO Junqi. Clear image acquisition of V-shaped welding area based on visual attention[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(9): 19-24,35. DOI: 10.12073/j.hjxb.2018390217 |
[3] | QI Jiyang, LI Jinyan, LU Zhenyun, WEI Sai. Application of improved Otsu algorithm to welding image segmentation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 97-100. |
[4] | LUO Xiang, WANG Zongyi. Vision system for open arc welding based on multi-exposure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 91-94. |
[5] | HU Wengang, GANG Tie. Recognition of weld flaw based on feature fusion of ultrasonic signal and image[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 53-56. |
[6] | GAO Fei, WANG Kehong, LIANG Yongshun, ZHAN Lanlan, ZHANG Yan. A multi-scale fractal image segmentation method for arc welding pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 33-36. |
[7] | LI Yuan, WANG Qinglin, XU De, TAN Min. Image processing and features extraction of molten pool for pipe welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 57-60. |
[8] | WANG Zhijiang, ZHANG Guangjun, GAO Hongming, WU Lin. Dynamic monitoring of weld pool image for pulsed GTAW in welding scene[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (9): 47-50. |
[9] | CAI Guorui, DU Dong, TIAN Yuan, HOU Runshi, GAO Zhiling. Defect detection of X-ray images of weld using optimized heuristic search based on image information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 29-32. |
[10] | YAN Zhi-hong, ZHANG Guang-jun, QIU Mei-zhen, GAO Hong-ming, WU Lin. Monitoring and processing of weld pool images in pulsed gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 37-40. |