Microstructure and corrosion behavior of Ti-6Al-4V alloy using selective laser melting
-
Graphical Abstract
-
Abstract
To reveal the feasibility of applying selective laser melting (SLM) to titanium alloy-made underwater equipment components, the corrosion resistance of SLM-prepared Ti64 alloy in a simulated seawater environment was explored. The research finds that the SLM-prepared Ti64 alloy primarily consists of needle-like α' martensite, with a β-phase content of approximately 0.3%. Comparison through electrochemical tests reveals that in a NaCl solution with a mass fraction of 3.5%, the open-circuit potential of SLM-prepared Ti64 is −119.3 mV, significantly lower than that of wrought Ti64 (234.12 mV). The analysis of the potentiodynamic polarization curves using the extrapolation method shows that the corrosion potential (Ecorr) of the SLM-prepared Ti64 is −237.3 mV, also lower than that of wrought Ti64 (118.4 mV). By fitting the impedance spectra with an equivalent circuit model, the passive film resistance (Rf) and charge transfer resistance (Rct) of the SLM-prepared Ti64 alloy are 192.4 kΩ·cm2 and 2.69 MΩ·cm2, respectively, both lower than those of wrought Ti64 (235 kΩ·cm2 and 4.34 MΩ·cm2). The slow stress and strain corrosion results at different strain rates are analyzed. At strain rates of 10−5 s−1, 5 × 10–6 s−1, and 10–6 s−1, the stress corrosion susceptibility of the SLM-prepared Ti64 alloy is 20.2%, 17.2%, and 14.4%, respectively, all higher than that of wrought Ti64 under the same conditions (−1.4%, 12.9%, and 10.8%).
-
-