Citation: | WANG Huaishen, CHEN Lei, ZHANG Hongxia, CHAI Fei, YAN Xiaoying, DONG Peng. Microstructure and corrosion behavior of Ti-6Al-4V alloy using selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 125-132. DOI: 10.12073/j.hjxb.20240106001 |
To reveal the feasibility of applying selective laser melting (SLM) to titanium alloy-made underwater equipment components, the corrosion resistance of SLM-prepared Ti64 alloy in a simulated seawater environment was explored. The research finds that the SLM-prepared Ti64 alloy primarily consists of needle-like α' martensite, with a β-phase content of approximately 0.3%. Comparison through electrochemical tests reveals that in a NaCl solution with a mass fraction of 3.5%, the open-circuit potential of SLM-prepared Ti64 is −119.3 mV, significantly lower than that of wrought Ti64 (234.12 mV). The analysis of the potentiodynamic polarization curves using the extrapolation method shows that the corrosion potential (Ecorr) of the SLM-prepared Ti64 is −237.3 mV, also lower than that of wrought Ti64 (118.4 mV). By fitting the impedance spectra with an equivalent circuit model, the passive film resistance (Rf) and charge transfer resistance (Rct) of the SLM-prepared Ti64 alloy are 192.4 kΩ·cm2 and 2.69 MΩ·cm2, respectively, both lower than those of wrought Ti64 (235 kΩ·cm2 and 4.34 MΩ·cm2). The slow stress and strain corrosion results at different strain rates are analyzed. At strain rates of 10−5 s−1, 5 × 10–6 s−1, and 10–6 s−1, the stress corrosion susceptibility of the SLM-prepared Ti64 alloy is 20.2%, 17.2%, and 14.4%, respectively, all higher than that of wrought Ti64 under the same conditions (−1.4%, 12.9%, and 10.8%).
[1] |
沈磊, 黄健康, 刘光银, 等. 等离子弧 + 交流辅助电弧增材制造钛合金微观组织与性能[J]. 焊接学报, 2023, 44(10): 57 − 63. doi: 10.12073/j.hjxb.20220918002
SHEN Lei, HUANG Jiankang, LIU Guangyin, et al. Microstructure and properties of titanium alloy made by plasma arc and AC auxiliary arc additive manufacturing[J]. Transactions of the China Welding Institution, 2023, 44(10): 57 − 63. doi: 10.12073/j.hjxb.20220918002
|
[2] |
DING H H, ZHANG J, LIU J Y, et al. Effect of volume energy density on microstructure and mechanical properties of TC4 alloy by selective laser melting[J]. Journal of Alloys and Compounds, 2023, 968: 171769.
|
[3] |
DHIMAN S, CHINTHAPENTA V, BRANDT M, et al. Microstructure control in additively manufactured Ti-6Al-4V during high-power laser powder bed fusion[J]. Additive Manufacturing, 2024, 96: 104573.
|
[4] |
DAI N W, ZHANG L C, ZHANG J X, et al. Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution[J]. Corrosion Science, 2016, 102: 484 − 489.
|
[5] |
ZHANG J, YANG P Z, YANG H O, et al. Effect of heat treatment on microstructure and properties of hybrid manufacturing TC4 alloy bonding zone[J]. Journal of Materials Research and Technology, 2025, 34: 1108 − 1119.
|
[6] |
CHENG H X, LUO H, CHENG J, et al. Optimizing the corrosion resistance of additive manufacturing TC4 titanium alloy in proton exchange membrane water electrolysis anodic environment[J]. International Journal of Hydrogen Energy, 2024, 93: 753 − 769.
|
[7] |
DENG T S, ZHONG X Y, ZHONG M, et al. Effect of scandium on microstructure and corrosion resistance of Ti64 alloy in NaCl solution[J]. Materials Characterization, 2023, 197: 112671.
|
[8] |
LIAN Z W, XIN S W, GUO P, et al. Synergistic effect of Cr and Fe elements on stress corrosion fracture toughness of titanium alloy[J]. Metals and Materials International, 2024, 31: 1087 − 1095.
|
[9] |
BOWER K, MURRAY S, REINHART A, et al. Corrosion resistance of selective laser melted Ti–6Al–4V alloy in salt fog environment[J]. Results in Materials, 2020, 8: 100122. doi: 10.1016/j.rinma.2020.100122
|
[10] |
王非凡, 谢聿铭, 吴会强, 等. 2219铝合金FSW和TIG焊接头力学与腐蚀行为[J]. 焊接学报, 2022, 43(6): 43 − 49. doi: 10.12073/j.hjxb.20220103001
WANG Feifan, XIE Yuming, WU Huiqiang, et al. Mechanical performances and corrosion behaviors of friction stir welded and TIG welded 2219 aluminum alloy joints[J]. Transactions of the China Welding Institution, 2022, 43(6): 43 − 49. doi: 10.12073/j.hjxb.20220103001
|
[11] |
MAHLOBO M G, CHIKOSHA L, OLUBAMBI P A. Study of the corrosion properties of powder rolled Ti-6Al-4V alloy applied in the biomedical implants[J]. Journal of Materials Research and Technology, 2022, 18: 3631 − 3639. doi: 10.1016/j.jmrt.2022.04.004
|
[12] |
ZHOU X, XU D K, GENG S J, et al. Mechanical properties, corrosion behavior and cytotoxicity of Ti-6Al-4V alloy fabricated by laser metal deposition[J]. Materials Characterization, 2021, 179: 111302. doi: 10.1016/j.matchar.2021.111302
|
[13] |
TAN B, CHEN W J, CAO T, et al. Effect of CeO2 content on the corrosion resistance of nanostructured Al2O3-10wt. %TiO2 ceramic coatings[J/OL]. China Welding, 2025, 33: http://chinawelding.hwi.com.cn/article/id/79102d41-4884-40db-922a-6d709e47ef22.
|
[14] |
苏允海, 杨太森, 戴志勇, 等. Inconel 625熔敷金属抗Cl−腐蚀行为分析[J]. 焊接学报, 2021, 42(6): 64 − 70.
SU Yunhai, YANG Taisen, DAI Zhiyong, et al. Analysis of Cl− corrosion resistance of Inconel 625 deposited metal[J]. Journal of Materials Research and Technology, 2021, 42(6): 64 − 70.
|
1. |
郭宁,朱亮,张爱华,周辉,刘振民,孙鹏. 送进式焊剂片约束电弧超窄间隙焊接工艺参数匹配. 电焊机. 2024(03): 60-66 .
![]() | |
2. |
汤国玺,朱亮,张爱华,周辉,郭宁,周毅. 超窄间隙焊接中送进焊剂片与电弧相互作用机制分析. 焊接学报. 2023(03): 54-60+132 .
![]() | |
3. |
冯延鹏,张爱华,梁婷婷,马强杰,马晶,王平. 基于改进SSA优化SVM的超窄间隙焊接质量评估. 电子测量与仪器学报. 2023(06): 195-205 .
![]() | |
4. |
何卫隆,王平,张爱华,梁婷婷,马强杰. 基于目标检测的焊接电弧形态在线定量检测. 浙江大学学报(工学版). 2023(09): 1903-1914 .
![]() | |
5. |
姚仁,朱亮,陈欢,张爱华,李增罡. 送进式焊剂片约束电弧超窄间隙焊方法. 焊接技术. 2021(11): 24-27 .
![]() | |
6. |
朱亮,李潇,张爱华,刘强,王秀菊. 槽型钢轨与辙叉的超窄间隙焊接. 焊接. 2020(02): 1-4+9+65 .
![]() | |
7. |
董敏,朱亮,韩潇橦,张爱华,蒋小霞. 焊剂带约束电弧超窄间隙横焊焊缝成形. 电焊机. 2020(08): 57-61+139 .
![]() | |
8. |
乔及森,芮正雷,王磊,陈振文. 基于组合热源模型焊剂片约束电弧焊T形接头温度场及应力场计算与试验研究. 材料导报. 2020(22): 22142-22147 .
![]() | |
9. |
陈振文,乔及森,王磊,芮正雷,朱亮. 焊剂片约束电弧焊三明治板T形接头的组织与性能. 焊接. 2019(09): 5-9+65 .
![]() | |
10. |
陈振文,王磊,芮正雷,乔及森. 高强钢三明治板T形接头焊剂片约束电弧焊电弧行为. 焊接学报. 2019(12): 83-90+164-165 .
![]() |