Advanced Search
XU Wanghui, JIA Xinghua, ZHAO Rongze, YU Chen, GUO Chunfu, YANG Chen. Influence of central ventilation on the formation of narrow gap TIG welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 121-127. DOI: 10.12073/j.hjxb.20231106001
Citation: XU Wanghui, JIA Xinghua, ZHAO Rongze, YU Chen, GUO Chunfu, YANG Chen. Influence of central ventilation on the formation of narrow gap TIG welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 121-127. DOI: 10.12073/j.hjxb.20231106001

Influence of central ventilation on the formation of narrow gap TIG welds

More Information
  • Received Date: November 05, 2023
  • Available Online: February 11, 2025
  • In response to the problem of poor side wall fusion of narrow gap tungsten inert gas(TIG) , this article adopts the method of tungsten electrode center ventilation to expand the welding arc and transfer the arc heat to the groove side wall to ensure sufficient fusion of the narrow gap groove side wall. On the basis of building a hollow tungsten electrode center ventilation narrow gap welding system, the influence of parameters such as center gas flow rate on the weld forming size and arc shape is studied. The results show that compared with solid tungsten electrodes and hollow tungsten electrodes, the narrow gap welds melting width and side wall melting depth obtained by the hollow tungsten electrode center ventilation method are increased. Under the same parameters, the solid tungsten electrode welds melting width is 9.32 mm, the hollow tungsten electrode without ventilation obtains a melting width of 9.91 mm, and the melting width increases to 11.02 mm after the center ventilation; As the gas flow rate at the center of the hollow tungsten electrode increases, the width of the narrow gap weld and the depth of the side wall melt also increase. When the gas flow rate reaches the critical value (≥ 0.8 L/min), a side wall incomplete fusion defect occurs. The introduction of inert gas into the center causes the electron channel to transfer to the peripheral area of the hollow tungsten electrode, thereby improving the problem of poor side wall fusion of narrow gap TIG.

  • [1]
    李渊博, 麻帅川. 窄间隙焊接变形研究现状及进展[J]. 热加工工艺, 2024, 53(21): 9 − 15 + 21.

    Li Yuanbo, Ma Shuaichuan. Research status and progress of narrow gap welding deformation[J]. Hot Working Technology, 2024, 53(21): 9 − 15 + 21.
    [2]
    滕彬, 范成磊, 徐锴, 等. 厚板窄间隙焊接技术研究现状与应用进展[J]. 焊接学报, 2024, 45(1): 116 − 128. doi: 10.12073/j.hjxb.20230923001

    Teng Bin, Fan Chenglei, Xu Kai, et al. Research status and application progress of narrow gap welding technology for thick plates[J]. Transactions of The China Welding Institution, 2024, 45(1): 116 − 128. doi: 10.12073/j.hjxb.20230923001
    [3]
    郭洋, 董志伟, 李代龙, 等. 大壁厚NiCrMoV钢的窄间隙焊接工艺与接头性能[J]. 焊管, 2024, 47(2): 57 − 62.

    Guo Yang, Dong Zhiwei, Li Daiong, et al. Narrow gap welding process and joint performance of NiCrMoV steel with large wall thickness[J]. Welded Pipe and Tube, 2024, 47(2): 57 − 62.
    [4]
    Agostini P, Coppola R, Hofmann M, et al. Stress distribution in a 316L(N) steel narrow gap TIG model weld for Gen IV nuclear applications[J]. Nuclear Materials and Energy, 2022, 32: 101203. doi: 10.1016/j.nme.2022.101203
    [5]
    杨义成, 陈健, 黄瑞生, 等. 空心钨极焊接关键技术问题及发展现状[J]. 焊接, 2021(5): 1 − 8.

    Yang Yicheng, Chen Jian, Huang Ruisheng, et al. Key technical problems and development status of hollow tungsten arc welding[J]. Welding & Joining, 2021(5): 1 − 8.
    [6]
    祝宇, 陈辉, 王佰昱. 大壁厚窄间隙焊缝根部侧壁未熔合缺陷有效检出方法研究[J]. 机械, 2021, 48(S1): 36 − 39.

    Zhu Yu, Chen Hui, Wang Baiyu. Research on effective detection method of the defect of poor side wall fusion on the Large wall thickness narrow gap weld root[J]. Machinery, 2021, 48(S1): 36 − 39.
    [7]
    Cai C , Yu J , Chen Z L, et al. Welding process stability in narrow-gap oscillating laser-MIG hybrid welding of titanium alloys with various oscillating patterns[J]. Journal of Manufacturing Processes, 2025, 133: 151 − 162.
    [8]
    刘先淼, 岳建锋, 黄云龙, 等. 窄间隙P-GMAW多信息融合侧壁熔合状态识别研究[J]. 材料科学与工艺, 2023, 31(4): 9 − 17. doi: 10.11951/j.issn.1005-0299.20220228

    Liu Xianmiao, Yue Jianfeng, Huang Yunlong, et al. Sidewall fusion state recognition of narrow gap P-GMAW based on multi-information fusion[J]. Materials Science and Technology, 2023, 31(4): 9 − 17. doi: 10.11951/j.issn.1005-0299.20220228
    [9]
    董曼淑, 孙清洁, 刘进德, 等. 中部槽构件摆动电弧窄间隙GMAW焊接接头组织及性能研究[J]. 电焊机, 2024, 54(3):54 − 59. doi: 10.7512/j.issn.1001-2303.2024.03.09

    Dong Manshu, Sun Qingjie, Liu Jinde, et al. Microstructure and properties of middle trough components for swing arc GMAW narrow gap welding[J]. Electric Welding Machine, 2024, 54(3): 54 − 59. doi: 10.7512/j.issn.1001-2303.2024.03.09
    [10]
    Lei Z, Cao H, Cui X F, et al. A novel high efficiency narrow-gap laser welding technology of 120 mm high-strength steel[J]. Optics and Lasers in Engineering, 2024, 178: 108232. doi: 10.1016/j.optlaseng.2024.108232
    [11]
    Ni Zhida, Dong Bolun, Li Yunhe, et al. Effects of processing parameters on molten behavior, arc stability, and defect forming in swing-arc narrow gap GMA vertical up welding[J]. Journal of Materials Processing Technology, 2023, 321: 118155. doi: 10.1016/j.jmatprotec.2023.118155
    [12]
    Wang J X, Li C K, Yang B H, et al. Melting pool visualization and penetration prediction study of TIG bottoming welding with narrow gap hot wire[J]. Journal of Manufacturing Processes, 2025, 133: 226 − 237. doi: 10.1016/j.jmapro.2024.11.055
    [13]
    Liang G D, Qin G L, Cao P Z, et al. Evolutions of temperature field and stress field in narrow gap oscillating laser welding process based on equivalent heat source[J]. Journal of Materials Research and Technology, 2024, 28: 154 − 167. doi: 10.1016/j.jmrt.2023.11.262
    [14]
    刘文吉, 肖宇, 杨嘉昇, 等. 窄间隙P-GMAW仰焊位置熔滴过渡影响因素及控制方法[J]. 焊接学报, 2024, 45(1): 58 − 63. doi: 10.12073/j.hjxb.20221212001

    Liu Wenji, Xiao Yu, Yang Jiasheng, et al. Influence factors and control methods of droplet transfer in narrow gap P-GMAW overhead welding position[J]. Transactions of The China Welding Institution, 2024, 45(1): 58 − 63. doi: 10.12073/j.hjxb.20221212001
    [15]
    Li K, Jia C B, Fang C, et al. Numerical simulation of the unique rotating arc behaviors during narrow-groove GTAW[J]. Journal of Manufacturing Processes, 2024, 131: 1611 − 1623. doi: 10.1016/j.jmapro.2024.09.109
    [16]
    Jing H, Chao F, Jin L, et al. Study on molten pool flow and hot cracking of narrow gap laser welding of 316LN stainless steel for fusion reactor[J]. Optics & Laser Technology, 2025, 181: 111633.
    [17]
    Fang C, Wei J, Liu J. Solidification cracking sensibility of narrow gap laser welding on ITER-grade austenitic stainless steel[J]. Fusion Engineering and Design, 2021, 162: 112068. doi: 10.1016/j.fusengdes.2020.112068
  • Related Articles

    [1]TENG Bin, FAN Chenglei, XU Kai, WU Pengbo, NIE Xin, HUANG Ruisheng. Research status and application progress of narrow gap welding technology for thick plates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 116-128. DOI: 10.12073/j.hjxb.20230923001
    [2]LIU Wenji, XIAO Yu, YANG Jiasheng, ZHU Pengfei. Influence factors and control methods of droplet transfer in narrow gap P-GMAW overhead welding position[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 58-63. DOI: 10.12073/j.hjxb.20221212001
    [3]LI Xiangwen, WANG Lu, YI Chushan, WU Jiayun, LONG Zhiheng. A cylindrical capacitance sensor suitable for automatic arc tracking system of narrow gap weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 106-113. DOI: 10.12073/j.hjxb.20220425001
    [4]YUAN Shuai, LIU Wenji, LI Liangyu, JIANG Xiao. Heat source model and temperature field simulation for the fusion of side wall welded by weaving arc narrow gap MAG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 95-99. DOI: 10.12073/j.hjxb.2018390305
    [5]WANG Meng, LÜ Xiaochun, LIANG Xiaomei, HE Shi. Investigation on sidewall fusion behavior of horizontal narrow gap TIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 118-123.
    [6]LI Wenhang, HU Ting, LIU Chuan, WANG Jiayou, WANG Miao. Rotating arc narrow gap welding numerical simulation of temperature field and side wall penetration[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 5-8.
    [7]XU Wanghui, LIN Sanbao, YANG Chunli, FAN Chenglei. Weld bead formation in oscillating arc narrow gap vertical-up GMAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 56-60.
    [8]LI Yuanbo, ZHU Liang. Heating characteristic of constricting TIG arc with insulating plate in narrow gap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 51-54.
    [9]WANG Jia-you, GUO Hong-bin, YANG Feng. A new rotating arc process for narrow gap MAG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 65-67.
    [10]Chen Wuzhu, Katsunori Inoue. IMAGE PROCESSING METHOD APPLIED TO ON-LINE DETECTION OF NARROW GAP WEAVING MIG/MAG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (4): 247-254.

Catalog

    Article views (51) PDF downloads (14) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return