Advanced Search
LIU Jinhao, LI Jiachen, ZHANG Liangliang, WU Baosheng, LI Peng, DONG Honggang. Microstructural evolution and corrosion property of Al-Mg alloy friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 8-18. DOI: 10.12073/j.hjxb.20231011002
Citation: LIU Jinhao, LI Jiachen, ZHANG Liangliang, WU Baosheng, LI Peng, DONG Honggang. Microstructural evolution and corrosion property of Al-Mg alloy friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 8-18. DOI: 10.12073/j.hjxb.20231011002

Microstructural evolution and corrosion property of Al-Mg alloy friction stir welding joint

More Information
  • Received Date: October 10, 2023
  • Available Online: September 01, 2024
  • Based on electron backscatter diffraction (EBSD) and potentiodynamic polarization, the paper explores the microstructure, corrosion property and mechanical property of Al-Mg alloy AA5083-H112 friction stir welding (FSW) joint, reveals the evolution mechanism of the microstructure of Al-Mg alloy FSW joint, and clarifies the influence of microstructure on its corrosion property and mechanical property. The results show that the microstructure evolution of 5083-H112 aluminum alloy FSW joint from base metal zone (BMZ) to nugget zone (NZ) conforms to the mechanism of continuous dynamic recrystallization. The average grain size of the joint from the BMZ to the NZ at 800 r/min increases and then decreases, and the fraction of high angle grain boundaries (HAGBs) decreases and then increases. With the increasing of rotating rate, the average grain size in the NZ increases gradually, and the fraction of HAGBs decreases at first and then increases due to the influence of welding heat input and post-welding cooling time. The corrosion tendency in different zones of the joint at the same rotating rate and in the NZ of the joints with different rotating rates show a positive correlation with the fraction of HAGBs, and the corrosion site is mainly in the grain boundaries, and the corrosion morphology is characterized by intergranular corrosion and exfoliation corrosion. The hardness of each zone of the joint is consistent with the microstructure, but is insensitive to changes in rotating rate. The tensile strength of the joints reached more than 97% of the base metal in the range of 600 r/min and 1000 r/min, while the elongation is close to that of the base metal.

  • [1]
    Ma Y T, Dong H G, Li P, et al. A novel corrosion transformation process in aluminum alloy/galvanized steel welded joint[J]. Corrosion Science, 2022, 194: 109936. doi: 10.1016/j.corsci.2021.109936
    [2]
    陈兴惠, 张洪申. 基于主成分及灰色关联度分析的5083铝合金FSW接头工艺参数优化[J]. 焊接学报, 2023, 44(5): 62 − 69.

    Chen Xinghui, Zhang Hongshen. Process parameters optimization of 5083 aluminum alloy FSW joint based on principal component analysis and grey correlation analysis[J]. Transactions of the China Welding Institution, 2023, 44(5): 62 − 69.
    [3]
    Han R H, Ren D X, Song G, et al. Research on friction stir welding of 5754 aluminum alloy with unequal thickness[J]. China Welding, 2023, 32(3): 1 − 9.
    [4]
    Zamrudi F H, Setiawan A R. Effect of friction stir welding parameters on corrosion behaviour of aluminium alloys: an overview[J]. Corrosion Engineering, Science and Technology, 2022, 57(7): 696 − 707. doi: 10.1080/1478422X.2022.2116185
    [5]
    Li Y L, Xia W J, Yan H G, et al. Microstructure and mechanical properties of friction-stir-welded high-Mg-alloyed Al-Mg alloy plates at different rotating rates[J]. Rare Metals, 2021, 40(8): 2167 − 2178. doi: 10.1007/s12598-020-01558-3
    [6]
    李莹莉. 5A12铝合金搅拌摩擦焊接头组织与力学性能的研究[D]. 长沙: 湖南大学, 2020.

    Li Yingli. Research on microstructure and mechanical properties of friction stir welded joint of 5A12 aluminum alloy[D]. Changsha: Hunan University, 2020.
    [7]
    Yadav R, Kumar A, Chaudhari G P, et al. Mechanical and stress corrosion cracking behavior of welded 5059H116 alloy[J]. Corrosion Science, 2022, 206: 110528. doi: 10.1016/j.corsci.2022.110528
    [8]
    Fan L T, Ma J J, Zou C X, et al. Revealing foundations of the intergranular corrosion of 5XXX and 6XXX Al alloys[J]. Materials Letters, 2020, 271: 127767. doi: 10.1016/j.matlet.2020.127767
    [9]
    Qin J, Li Z, Ma M Y, et al. Diversity of intergranular corrosion and stress corrosion cracking for 5083 Al alloy with different grain sizes[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 765 − 777. doi: 10.1016/S1003-6326(22)65831-X
    [10]
    Hu Z L, Pang Q, Dai M L. Microstructure and mechanical properties of friction stir welding joint during post weld heat treatment with different zigzag lines[J]. Rare Metals, 2019, 38(11): 1070 − 1077. doi: 10.1007/s12598-018-1179-7
    [11]
    Etter A L, Baudin T, Fredj N, et al. Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds[J]. Materials Science & Engineering A, 2007, 445: 94 − 99.
    [12]
    Hu Y Y, Liu H J, Li S, et al. Improving mechanical properties of a joint through tilt probe penetrating friction stir welding[J]. Materials Science & Engineering A, 2018, 731: 107 − 118.
    [13]
    郭幼节, 李劲风, 刘丹阳, 等. 铝锂合金动态再结晶行为的研究进展[J]. 航空材料学报, 2022, 42(5): 15 − 31.

    Guo Youjie, Li Jinfeng, Liu Danyang, et al. Research progress on dynamic recrystallization behavior of Al-Li alloy[J]. Journal of Aeronautical Materials, 2022, 42(5): 15 − 31.
    [14]
    Engler O, Miller-jupp S. Control of second-phase particles in the Al-Mg-Mn alloy AA 5083[J]. Journal of Alloys and Compounds, 2016, 689: 998 − 1010. doi: 10.1016/j.jallcom.2016.08.070
    [15]
    Chen Y C, Huang Y Y, Chang C P, et al. The effect of extrusion temperature on the development of deformation microstructures in 5052 aluminium alloy processed by equal channel angular extrusion[J]. Acta Materialia, 2003, 51(7): 2005 − 2015. doi: 10.1016/S1359-6454(02)00607-9
    [16]
    张成聪, 常保华, 陶军, 等. 2024铝合金搅拌摩擦焊过程组织演化分析[J]. 焊接学报, 2013(3): 57 − 60.

    Zhang Chengcong, Chang Baohua, Tao Jun, et al. Microstructure evolution during friction stir welding of 2024 aluminum alloy[J]. Transactions of the China Welding Institution, 2013(3): 57 − 60.
    [17]
    李芳草. 5083-H112铝合金FSW接头的敏化行为[D]. 沈阳: 东北大学, 2018.

    Li Fangcao. Sensitization behavior of 5083-H112 aluminum alloy friction stir welded joint[D]. Shenyang: Northeastern University, 2018.
    [18]
    D'Antuono D S, Gaies J, Golumbfskie W, et al. Direct measurement of the effect of cold rolling on β phase precipitation kinetics in 5xxx series aluminum alloys[J]. Acta Materialia, 2017, 123: 264 − 271. doi: 10.1016/j.actamat.2016.10.060
  • Related Articles

    [1]HU Shasha, QIU Cheng, ZHANG Datong. Effect of post-welding aging on the microstructure and mechanical properties of high-strength Al-6.7Zn-1.8Mg-0.2Cu aluminum alloy joints prepared by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 41-47. DOI: 10.12073/j.hjxb.20231029001
    [2]ZHANG Chao, ZHOU Mengbing, TAO Xin, ZHENG Yunxi, WANG Zhiguo, WEI Lianfeng, YANG Canxiang. Friction stir welding process microstructure and property of weld for Zr-Sn-Nb-Cr-Fe zirconium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 103-108. DOI: 10.12073/j.hjxb.20221202001
    [3]Rui MA, Linchuan LIU, Yajun WANG, Jie BAI, Caiwang TAN, Xiaoguo SONG. Effect of solution temperature on the microstructure evolution and mechanical properties of laser powder bed melting GH3536 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 73-79. DOI: 10.12073/j.hjxb.20220504002
    [4]WANG Hu, JIN Likun, PENG Yun. Microstructure and mechanical properties of joints of a new Al-Mg-Mn-Er alloy by TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 74-79. DOI: 10.12073/j.hjxb.20190924002
    [5]WANG Xijing, WEI Xueling, ZHANG Liangliang. Microstructural evolution and mechanical properties of friction stir welded 6082-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 1-5. DOI: 10.12073/j.hjxb.2018390057
    [6]LIN Song, ZHANG Kun, WANG Weibing, LUAN Guohong. Microstructures and mechanical properties of 2060 aluminum-lithium alloy FSW joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 101-104.
    [7]CAO Rui, FENG Zhen, CHEN Jianhong, JING Min. Microstructure, bonding mechanism and corrosion property of titanium TA2/copper T2 welded joint by cold metal transfer technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 39-42.
    [8]WANG Lianfeng, ZHU Xiaogang, QIAO Fengbin, GUO Lijie. Properties of Al-Mg alloys joints welded by refill friction stir spot weldeing process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 99-103.
    [9]LIU Xiaochao, WU Chuansong. Effect of ultrasonic vibration on microstructure and mechanical properties of friction stir welded joint of 6061-T4 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 49-53.
    [10]WANG Da-yong, FENG Ji-cai, GUO De-lun, LUAN Guo-hong, GUO He-ping, SUN Cheng-bin. Effect of welding speed on microstructure and mechanical property of high-strength aluminum alloy friction stir weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 71-73.

Catalog

    Article views (290) PDF downloads (109) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return