Citation: | ZHAO Hongyan, LYU Tao, YU Yue, ZHANG Jingzhang, ZHANG Guokai, CHEN Shujun. Oscillating behavior suppression of cross-coupled arc based on high frequency variable polarity current source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 23-29, 41. DOI: 10.12073/j.hjxb.20231009003 |
Theoretically, the cross coupled arc (CCA) technology can achieve decoupling and independent control of heat and mass transfer during the welding process, and has great development potential. However, in traditional CCA technology, the bypass arc current is generally provided by a low-frequency AC welding heat source. During the working process, the main arc will oscillate as the polarity of the bypass arc changes, resulting in uneven thermal distribution between different arcs and incomplete decoupling of heat and mass transfer. When applied in additive manufacturing, it will face problems such as uncontrollable droplet drop position and low forming accuracy. In order to solve the oscillation problem of the main arc, a CCA welding heat source with a bypass arc as a high-frequency variable polarity arc has been designed and developed. Experimental results show that this welding heat source can effectively suppress the oscillation behavior of the main arc by increasing the variable polarity frequency of the bypass arc. At the same time, the phenomenon of suppressing the oscillation of the main arc is manifested by the high-frequency and small amplitude vibration of the main arc. This effect can theoretically achieve the stirring effect on the molten pool, which is conducive to dendrite fragmentation and promotes the refinement of weld grain.
[1] |
王小伟, 张斌, 曾如川, 等. 铝合金VPPAW穿孔焊接匙孔闭合处的微观组织与力学性能[J]. 焊接学报, 2024, 45(3): 1 − 6.
Wang Xiaowei, Zhang Bin, Zeng Ruchuan, et al. Microstructure and mechanical properties of welds at keyhole closures in variable-polarity plasma arc welding of Al alloy[J]. Transactions of the China Welding Institution, 2024, 45(3): 1 − 6.
|
[2] |
Sangwan K, Herrmann C, Egede P, et al. Life cycle assessment of arc welding and gas welding processes[J]. Procedia CIRP, 2016, 48: 62 − 67. doi: 10.1016/j.procir.2016.03.096
|
[3] |
Fan Ding, Wang Yazhou, Li Dequan, et al. Numerical analysis of arc-droplet behavior in thin wire high current MAG welding with magnetic control[J]. China Welding, 2023, 32(4): 29 − 37.
|
[4] |
Chen J, Wu C, Chen M. Improvement of welding heat source models for TIG-MIG hybrid welding process[J]. Journal of Manufacturing Processes, 2014, 16(4): 485 − 493. doi: 10.1016/j.jmapro.2014.06.002
|
[5] |
Kanemaru S, Sasaki T, Sato T, et al. Study for TIG–MIG hybrid welding process[J]. Welding in the World, 2013, 31(4): 18 − 21.
|
[6] |
Mazumder J, Steen W M. Heat transfer model for CW laser material processing[J]. Journal of Applied Physics, 1980, 51(2): 941 − 947. doi: 10.1063/1.327672
|
[7] |
张亮. 交叉耦合电弧焊接方法及热力传输机制研究[D]. 北京工业大学, 2016.
Zhang Liang. Research on cross coupled arc welding method and thermal transmission mechanism [D]. Beijing: Beijing University of Technology, 2016
|
[8] |
权国政, 刘莹莹, 张建生, 等. 摆动电弧熔丝增材技术研究现状及应用[J]. 大型铸锻件, 2022(6): 1 − 6.
Quan Guozheng, Liu Yingying, Zhang Jiansheng, et al. Research status and application of swing arc melting additive technology[J]. Large Scale Casting and Forging, 2022(6): 1 − 6.
|
[9] |
旷小聪, 齐铂金, 杨建平, 等. Inconel-52M焊丝高频脉冲TIG电弧及熔池流动行为研究[J]. 焊接学报, 2024, 45(1): 1 − 9.
Kuang Xiaocong, Qi Bojin, Yang Jianping, et al. Study on the behavior of high-frequency pulsed TIG arc and molten pool flow of Inconel-52M welding wire[J]. Transactions of the China Welding Institution, 2024, 45(1): 1 − 9.
|
[10] |
Dong S, Jiang F, Xu B, et al. Physical mechanism of polar zone phenomena in cross-coupling arc welding[J]. Journal of Manufacturing Processes, 2020, 50: 440 − 449. doi: 10.1016/j.jmapro.2019.12.021
|
[11] |
程世佳, 朱志明, 符平坡. 基于电弧图像的脉冲TIG焊电弧形态及特征温度演变规律[J]. 清华大学学报(自然科学版), 2021, 61(9): 994 − 1001.
Cheng Shijia, Zhu Zhiming, Fu Pingpo. Pulse TIG welding arc morphology and characteristic temperature evolution based on arc images[J]. Journal of Tsinghua University (Natural Science Edition), 2021, 61(9): 994 − 1001.
|
[1] | WANG Zeli, ZHANG Tianyi, DIAO Guoning, XU Guomin, LIU Liming. Heat transfer mechanism and mechanical properties of triple-wire gas indirect arc welding for low carbon steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 1-6. DOI: 10.12073/j.hjxb.20210627001 |
[2] | LIU Zhengjun, LI Yuhang, SU Yunhai. Numerical simulation of heat transfer and fluid flow for arc plasma in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 120-125. DOI: 10.12073/j.hjxb.2019400138 |
[3] | XIAO Jun, ZHANG Guangjun, CHEN Shujun, ZHANG Hao. Decoupling control of metal transfer in GMAW by pulsed laser irradiation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 33-36. |
[4] | HUANG Jiankang, ZHANG Gang, FAN Ding, SHI Yu. Decoupling control analysis of aluminum alloy pulse MIG welding process based on dynamic fuzzy neural networks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 43-47. |
[5] | LÜ Yan, TIAN Xincheng, LIANG Jun. Decoupling control design and simulation of aluminum alloy pulsed MIG welding based on dynamic PLS framework[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 17-20. |
[6] | CONG Baoqiang, QI Bojin, ZHOU Xingguo. TIG arc behavior of ultrafast-convert high-frequency variable-polarity square wave[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 87-90. |
[7] | SHI Yu, XUE Cheng, FAN Ding, LI Jianjun. Modeling and simulation of decoupling control system of aluminum pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 9-12. |
[8] | QIU Ling, FAN Chenglei, LIN Sanbao, YANG Chunli. High-frequency pulse modulated variable polarity welding power and its arc pressure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 81-84. |
[9] | ZHU Zi-xin, LIU Yan, XU Bin-shi, Ma Shi-ning. Numerical analysis of heat transfer behavior of atomized droplets during high velocity arc spraying:Ⅱ Influence of process parameters on heat transfer behavior of droplets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 5-8,12. |
[10] | ZHU Zi-xin, LIU Yang, XU Bin-shi, MA Shi-ning. Numerical analysis of heat transfer behavior of atomized droplets during high velocity arc spraying:I.mathematical model and vari-ations of heat transfer parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (1): 1-4,8. |
1. |
牛连山,李阳,姜艳朋,贾建龙,梁明明,朱明鑫. 自保护药芯焊丝管道全位置自动焊接工艺研究. 焊管. 2024(05): 69-76 .
![]() | |
2. |
王天琪,孟锴权,王传睿. 基于GA-BP神经网络的多层多道焊工艺预测及优化. 焊接学报. 2024(05): 29-37 .
![]() | |
3. |
栗卓新,张玉林,李红,Erika HOD■LOVá,王义朋,张禹. 焊接烟尘及其对呼吸系统颗粒沉积影响的研究进展. 北京工业大学学报. 2023(05): 597-608 .
![]() | |
4. |
朱珍文,石玗,顾玉芬,丁彬. 焊接烟尘的危害及综合治理研究现状. 电焊机. 2022(05): 1-12 .
![]() | |
5. |
席保龙,张峻铭,邓小龙,徐顺鑫,刘燕,杨璟瑜,王洪亚. 焊接烟尘中铬元素含量的研究与进展. 电焊机. 2022(05): 47-54 .
![]() | |
6. |
吴凯,卜智翔,罗佳,朱师琦,王立世. 基于神经网络的药芯焊丝GMAW发尘率预测. 焊接. 2022(07): 48-53+59 .
![]() | |
7. |
蒋伟琪,黄海鸿,刘赟,李磊,刘志峰. 基于组合神经网络的钨极氩弧焊环境负荷预测. 焊接学报. 2022(10): 77-85+118 .
![]() |