Advanced Search
ZHU Ming, ZHANG Hao, SHI Kun, HOU Xiaofei, SHI Yu. Analysis of surface roughness of fluorocarbon aluminum powder coating during laser cleaning and its influence on laser absorption[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 43-53. DOI: 10.12073/j.hjxb.20230331002
Citation: ZHU Ming, ZHANG Hao, SHI Kun, HOU Xiaofei, SHI Yu. Analysis of surface roughness of fluorocarbon aluminum powder coating during laser cleaning and its influence on laser absorption[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 43-53. DOI: 10.12073/j.hjxb.20230331002

Analysis of surface roughness of fluorocarbon aluminum powder coating during laser cleaning and its influence on laser absorption

More Information
  • Received Date: March 30, 2023
  • Available Online: December 26, 2023
  • In the process of laser cleaning the paint layer on the surface of 2024 aluminum alloy aircraft skin, the formation and evolution of rough surfaces can significantly affect the thermal interaction between the paint layer and the laser, as well as the removal mechanism. This study analyzed the changes in surface morphology and roughness of the paint layer during the layer-by-layer removal process using a 1064 nm pulsed laser. It investigated the generation mechanism and evolution pattern of rough surfaces, and calculated the effect of the rough surface of the paint layer on the laser absorption rate during the layer-by-layer removal process by establishing an equivalent analysis model for the rough surface of the paint layer. The results show that, rough surfaces appear on the paint layer after different removal mechanisms during the laser paint removal process, and there is a certain pattern in the evolution of rough surfaces during the layer-by-layer laser paint removal process;during the laser layer-by-layer paint removal process, the rough surfaces significantly increase the laser absorption rate, with an increase of 32.8% in the laser absorption rate after 7 laser treatments. If a fixed initial laser cleaning process is used, the increased absorption rate will lead to damage to the aluminum alloy substrate.

  • [1]
    王祝堂. 铝材在国产大飞机上的应用[J]. 轻合金加工技术, 2016, 44(11): 1 − 8.

    Wang Zhutang. Application of aluminum materials on domestic large aircrafts[J]. Light Alloy Fabrication Technology, 2016, 44(11): 1 − 8.
    [2]
    蒋一岚, 叶亚云, 周国瑞, 等. 飞机蒙皮的激光除漆技术研究[J]. 红外与激光工程, 2018, 47(12): 29 − 35.

    Jiang Yilan, Ye Yayun, Zhou Guorui, et al. Research on laser paint removing of aircraft surface[J]. Infrared and Laser Engineering, 2018, 47(12): 29 − 35.
    [3]
    唐扬刚, 贺小帆, 刘文珽, 等. 飞机连接结构防护涂层老化损伤量化评估方法[J]. 航空学报, 2017, 38(1): 141 − 153.

    Tang Yanggang, He Xiaofan, Liu Wenting, et al. Quantitative method for evaluating aging damage of protective coatings of aircraft joint structures[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 141 − 153.
    [4]
    Wang F, Qian W, Huang H Q, et al. Effects of laser paint stripping on oxide film damage of 2024 aluminium alloy aircraft skin[J]. Optics Express, 2021, 29(22): 440283.
    [5]
    Ortiz P, Antunez V, Ortiz R, et al. Comparative study of pulsed laser cleaning applied to weathered marble surfaces[J]. Applied Surface Science, 2013, 283(14): 193 − 201.
    [6]
    Li F, Chen X, Lin W, et al. Nanosecond laser ablation of Al-Si coating on boron steel[J]. Surface and Coatings Technology, 2017, 319: 129 − 135. doi: 10.1016/j.surfcoat.2017.03.038
    [7]
    Li Z, Zhang D, Xuan S, et al. Removal mechanism of surface cleaning on TA15 titanium alloy using nanosecond pulsed laser[J]. Optics & Laser Technology, 2021, 139(1): 106998.
    [8]
    Liu H, Li J, Yang Y, et al. Automatic process parameters tuning and surface roughness estimation for laser cleaning[J]. IEEE Access, 2020, 8: 20904 − 20919. doi: 10.1109/ACCESS.2020.2970086
    [9]
    Seo Y, Son S, Lee D. A study of laser cleaning to remove by-products occurring after arc welding[J]. Materials Chemistry and Physics, 2022, 288: 126375. doi: 10.1016/j.matchemphys.2022.126375
    [10]
    张成竹, 陈辉, 蔡创, 等. 激光清洗对SMA490BW钢接头表面应力及腐蚀的影响[J]. 焊接学报, 2020, 41(11): 89 − 96.

    Zhang Chengzhu, Chen Hui, Cai Chuang, et al. Effect of laser cleaning on surface stress and corrosion of SMA490BW steel welded joint[J]. Transactions of the China Welding Institution, 2020, 41(11): 89 − 96.
    [11]
    Ren Y, Wang L, et al. The surface properties of an aviation aluminum alloy after laser cleaning[J]. Coatings, 2022, 12: 273. doi: 10.3390/coatings12020273
    [12]
    江茫, 徐进军, 刘珂嘉, 等. 飞机蒙皮激光除漆技术工程化应用的现状与展望(特邀)[J]. 红外与激光工程, 2023, 52(2): 61 − 74.

    Jiang Mang, Xu Jinjun, Liu Kejia, et al. Current status and prospect of engineering application of laser paint removal technology for aircraft skin (invited)[J]. Infrared and Laser Engineering, 2023, 52(2): 61 − 74.
    [13]
    徐进军, 江茫, 任延岫, 等. 激光除漆技术及其在飞机蒙皮除漆工程化应用的研究进展[J]. 光学技术, 2023, 49(1): 34 − 45.

    Xu Jinjun, Jiang Mang, Ren Yanxiu, et al. Research progress of laser paint stripping technology and its engineering application in aircraft skin paint removal[J]. Optical Technique, 2023, 49(1): 34 − 45.
    [14]
    雷正龙, 孙浩然, 田泽, 等. 不同时间尺度的激光对铝合金表面油漆层清洗质量的影响[J]. 中国激光, 2021, 48(6): 59 − 68.

    Lei Zhenglong, Sun Haoran, Tian Ze, et al. Effect of laser at different time scales on cleaning quality of paint on Al alloy surfaces[J]. Chinese Journal of Lasers, 2021, 48(6): 59 − 68.
    [15]
    Jasim H, Demir A, Previtali B, et al. Process development and monitoring in stripping of a highly transparent polymeric paint with ns-pulsed fiber laser[J]. Optics & Laser Technology, 2017, 93: 60 − 66.
    [16]
    Zhu G, Wang S, Cheng W, et al. Corrosion and wear performance of aircraft skin after laser cleaning[J]. Optics & Laser Technology, 2020, 132(8): 106475.
    [17]
    Madhukar Y K, Mullick S, Nath A K. Development of a water-jet assisted laser paint removal process[J]. Applied Surface Science, 2013, 286: 192 − 205. doi: 10.1016/j.apsusc.2013.09.046
    [18]
    Miotello A, Kelly R. Critical assessment of thermal models for laser sputtering at high fluences[J]. Applied Physics Letters, 1995, 67(24): 3535 − 3537.
    [19]
    Madhukar Y K, Mullick S, Shukla D K, et al. Effect of laser operating mode in paint removal with a fiber laser[J]. Applied Surface Science, 2013, 264: 892 − 901. doi: 10.1016/j.apsusc.2012.10.193
    [20]
    朱映瑞. 铝合金基体表面漆层激光清除机理及工艺[D]. 兰州: 兰州理工大学, 2021.

    Zhu Yingrui. Mechanism and technology of laser removal of paint layer on Al alloy matrix surface[D]. Lanzhou: Lanzhou University of Technology, 2021.
    [21]
    Rhodes B T, Quintiere J G. Burning rate and flame heat flux for PMMA in a cone calorimeter[J]. Fire Safety Journal, 1996, 26(3): 221 − 240. doi: 10.1016/S0379-7112(96)00025-2
    [22]
    Staggs J. The heat of gasification of polymers[J]. Fire Safety Journal, 2004, 39(8): 711 − 720.
    [23]
    Ze T, Lei Z, Xi C, et al. Nanosecond pulsed fiber laser cleaning of natural marine micro-biofoulings from the surface of aluminum alloy[J]. Journal of Cleaner Production, 2019, 244: 1 − 15.
  • Related Articles

    [1]XU Zhenzhen, ZHANG Jianxun. Low-cycle fatigue properties of welded microzones based on the local strain approach[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 10-15, 31. DOI: 10.12073/j.hjxb.20220309001
    [2]YANG Shangqing, XU Lianyong, ZHAO Lei, HAN Yongdian, JING Hongyang. Study on high temperature low cycle fatigue behavior of a novel austenitic heat-resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 14-18. DOI: 10.12073/j.hjxb.20190718003
    [3]HAN Yongdian, ZHANG Zhaofu, XU Lianyong, ZHAO Lei, JING Hongyang. Study on high temperature low cycle fatigue behavior of P92 steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 11-14. DOI: 10.12073/j.hjxb.2019400063
    [4]WANG Xiaoguang, YU Huiping, LI Xiaoyang, CHEN Shujun. Fatigue test analysis of ultra-high strength steel spot welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 99-102,110.
    [5]WANG Chao, LI Xiaoyan, ZHU Yongxin. Influence of dwell time and loading rate on low cycle fatigue behavior of lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 71-75.
    [6]LU Ning. Virtual weld experiment system of billet flash butt welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 83-87.
    [7]ZHAO Wenzhong, WEI Hongliang, FANG Ji, LI Jitao. The theory and application of the virtual fatigue test of welded structures based on the master S-N curve method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 75-78.
    [8]YAN Keng, ZHANG Pei-lei, JIANG Cheng-yu. Low cycle fatigue property of TA5 titanium alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 84-86.
    [9]KONG Liang, WU Yi-xiong, LU Hao, JIN Xin. Integrated simulation method on virtual welding manufacturing sys-tem[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (1): 69-73,77.
    [10]YANG Yun-qiang, SONG Yong-lun, YIN Shu-yan, ZHANG Jun, YANG Qing-xuan, ZHI Nan. New research on welding machine test device based on virtual instrument technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 103-106.
  • Cited by

    Periodical cited type(6)

    1. 苏景新,卞文熙,路鹏程. 热塑性复合材料连接技术综述. 塑料工业. 2022(07): 17-25+36 .
    2. 宿欢欢,吴志生,贾托胜,邹琪. 碳纤维复合材料/铝合金焊接方法现状与发展. 焊接技术. 2021(S1): 1-8 .
    3. 杨苑铎,李洋,李一昂,王柏村,敖三三,罗震. 碳纤维增强热塑性复合材料超声波焊接研究进展. 机械工程学报. 2021(22): 130-156 .
    4. 宋宗贤,庄国彬,李嘉彬,魏鹏,韩明盼. 长玻纤PP复合材料的超声波焊接工艺研究. 现代塑料加工应用. 2020(03): 49-51 .
    5. 杨庭飞,朱永伟,赵青青. 塑料组合构件高效超声波焊接的仿真与实验. 工程塑料应用. 2019(02): 52-58 .
    6. 刘明瑞,严飙,彭福军,彭雄奇,尹红灵. 碳纤维/聚醚醚酮(PEEK)复合材料拉拔制管工艺设计和模拟. 材料科学与工艺. 2019(05): 1-6 .

    Other cited types(11)

Catalog

    Article views (115) PDF downloads (24) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return