Advanced Search
KUANG Xiaocong, QI Bojin, YANG Jianping, LU Yingyan. Study on the behavior of high-frequency pulsed TIG arc and molten pool flow of Inconel-52M welding wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 1-9. DOI: 10.12073/j.hjxb.20230309005
Citation: KUANG Xiaocong, QI Bojin, YANG Jianping, LU Yingyan. Study on the behavior of high-frequency pulsed TIG arc and molten pool flow of Inconel-52M welding wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 1-9. DOI: 10.12073/j.hjxb.20230309005

Study on the behavior of high-frequency pulsed TIG arc and molten pool flow of Inconel-52M welding wire

More Information
  • Received Date: March 08, 2023
  • Available Online: November 13, 2023
  • Based on high-speed camera and image processing technology, the influence of pulse frequency (0-60 kHz) on the behavior of welding arc and molten pool flow of Inconel-52M nickel alloy welding wire was analyzed, as well as their underlying mechanisms. The results indicated that the combination of high-frequency pulse current on conventional low-frequency pulse current could significantly shrink the arc shape, and the arc root size would gradually decrease with the increase of high-frequency pulse frequency. Compared to traditional low-frequency pulse welding, the overall area of the high-frequency pulsed arc decreased, while its core area and proportion increased, leading to improved arc energy concentration and temperature. Under the influence of high-frequency pulse current, both the axial pressure and radial electromagnetic force of the welding arc increased, with maximum increases of 18.0% and 8.1%, respectively. The rise in axial pressure promoted the fluidity of the weld pool, enabling more complete liquid metal flow during the welding process and resulting in a weld morphology characterized by large width and low wetting angle.

  • [1]
    曹睿, 刘刚, 陈剑虹, 等. 镍基材料焊接中高温失塑裂纹DDC的生成机理及研究进展[J]. 焊接, 2018(7): 7 − 11.

    Cao Rui, Liu Gang, Chen Jianhong, et al. Formation mechanism and research progress of ductility dip cracking in welding of nick-el-based materials[J]. Welding & Joining, 2018(7): 7 − 11.
    [2]
    闫英杰, 张凯嘉, 王若蒙, 等. 稀释率对ENiCrFe-7焊材熔敷金属隔离层中凝固裂纹的影响机理[J]. 焊接学报, 2020, 41(7): 13 − 17.

    Yan Yingjie, Zhang Kaijia, Wang Ruomeng, et al. Effect mechanism of dilution on solidification crack in ENiCrFe-7 buffering layer of deposited metal[J]. Transactions of the China Welding Institution, 2020, 41(7): 13 − 17.
    [3]
    Rhines F N, Wray P J. Investigation of the intermediate temperature ductility minimum in metals[J]. ASM Transactions Quarterly, 1961, 54(2): 117 − 128.
    [4]
    Nishimoto K, Saida K, Okauchi H, et al. Microcracking susceptibility in reheated weld metal-Microcracking in multipass weld metal of alloy 690 Part 1[J]. Science and Technology of Welding and Joining, 2006, 11(4): 455 − 461.
    [5]
    Nishimoto K, Saida K, Okauchi H, et al. Microcracking in multipass weld metal of alloy 690 Part 2: Microcracking mechanism in reheated weld metal[J]. Science and Technology of Welding and Joining, 2006, 11(4): 462 − 470.
    [6]
    Nishimoto K, Saida K, Okauchi H, et al. Microcracking in multipass weld metal of alloy 690 part 3: Prevention of microcracking in reheat weld metal by addition of La to filler metal[J]. Science and Technology of Welding and Joining, 2006, 11(4): 471 − 479.
    [7]
    Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal: Part I. ductility and microstructural characterization[J]. Materials Science and Engineering: A, 2004, 380(1-2): 259 − 271. doi: 10.1016/j.msea.2004.03.074
    [8]
    Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal: Part II – Insight into the mechanism for ductility dip cracking[J]. Materials Science and Engineering A, 2004, 380(1/2): 245 − 258.
    [9]
    Lim L C, Raj R. Effect of boundary structure on slip-induced cavitation in polycrystalline nickel[J]. Acta Metallurgica, 1984, 32(8): 1183 − 1190. doi: 10.1016/0001-6160(84)90125-1
    [10]
    Young G A, Capobianco T E, Penik M A, et al. The mechanism of ductility dip cracking in nickel-chromium alloys[J]. Welding Journal, 2008, 87(2): 31S − 43S.
    [11]
    崔巍. 镍基合金焊接接头高温失塑裂纹研究[D]. 上海: 上海交通大学, 2013.

    Cui Wei. Investigation in ductility dip cracking of the Ni-based alloy welding joint[D]. Shanghai: Shanghai Jiao Tong University, 2013.
    [12]
    张晓鸿, 马朋召, 张康, 等. 脉冲TIG焊接工艺参数对高温镍基合金焊缝组织的调控研究[J]. 机械工程学报, 2018, 54(2): 93 − 101. doi: 10.3901/JME.2018.02.093

    Zhang Xiaohong, Ma Pengzhao, Zhang Kang, et al. Study on controlling of welding seam microstructure about nickel-based high-temperature alloy by pulse TIG welding process[J]. Journal of Mechanical Engineering, 2018, 54(2): 93 − 101. doi: 10.3901/JME.2018.02.093
    [13]
    Cook G E, Eassa E. The effect of high-frequency pulsing of a welding arc[J]. IEEE Transactions on Industry Applications, 1985, IA-21(5): 1294 − 1299. doi: 10.1109/TIA.1985.349557
    [14]
    赵家瑞, 李义丹. 高频脉冲TIG焊的电弧控制及高频效应[J]. 天津大学学报:自然科学与工程技术版, 1989(3): 25 − 32.

    Zhao Jiarui, Li Yidan. Control over arc of pulsed high frequency TIG welding and high frequency effect[J]. Journal of Tianjin University:Natural Science and Engineering Technology Edition, 1989(3): 25 − 32.
    [15]
    Yang Z, Qi B, Cong B, et al. Microstructure, tensile properties of Ti-6Al-4V by ultra high pulse frequency GTAW with low duty cycle[J]. Journal of Materials Processing Technology, 2015, 216: 37 − 47. doi: 10.1016/j.jmatprotec.2014.08.026
    [16]
    Chen C, Fan C, Cai X, et al. Microstructure and mechanical properties of Q235 steel welded joint in pulsed and un-pulsed ultrasonic assisted gas tungsten arc welding[J]. Journal of Materials Processing Technology, 2020, 275: 116335. doi: 10.1016/j.jmatprotec.2019.116335
    [17]
    齐铂金, 许海鹰, 张伟. 0Cr18Ni9Ti超音频脉冲TIG焊接头组织与性能[J]. 北京航空航天大学学报, 2009, 35(2): 132 − 133.

    Qi Bojin, Xu Haiying, Zhang Wei. Microstructure and property analysis of 0Cr18Ni9Ti joints welded by ultra-sonic pulse tungsten-inert-gas welding technology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 132 − 133.
    [18]
    程世佳, 朱志明, 符平坡. 基于电弧图像的脉冲TIG焊电弧形态及特征温度演变规律[J]. 清华大学学报:自然科学版, 2021, 61(9): 994 − 1001.

    Cheng Shijia, Zhu Zhiming, Fu Pingpo. Arc shape variations and characteristic temperatures of pulsed TIG welding arcs based on observed arc images[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(9): 994 − 1001.
  • Related Articles

    [1]ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12.
    [2]ZHOU Guangtao, GUO Guanglei, FANG Hongyuan. Numerical simulation of temperature field during laser-induced welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 22-26.
    [3]ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36.
    [4]ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104.
    [5]XIONG Zhijun, LI Yongqiang, ZHAO Xihua, LI Min, ZHANG Weihua. Numerical simulation of temperature field in deep penetration laser welding under hot and press condition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 41-44.
    [6]LI Hong-ke, SHI Qing-yu, ZHAO Hai-yan, LI Ting. Auto-adapting heat source model for numerical analysis of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 81-85.
    [7]JIANG You-qing, GU Lei, LIU Jian-hua. Temperature field numerical simulation of YAG-MIG hybrid welding process for thick aluminum alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 104-107.
    [8]WANG Xi-chang, WU Bing, ZUO Cong-jin, LIU Fang-jun. New heat source model for numerical simulation of electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 81-84.
    [9]MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of muli-pass welding temperature field taking account of metal filling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 53-55,59.
    [10]Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29.
  • Cited by

    Periodical cited type(12)

    1. 贾登峰,夏腾辉,杜春平,刘晓刚,刘登峰. 304/Q345R复合板焊接接头微观组织与性能研究. 热加工工艺. 2025(03): 41-44+50 .
    2. 李小兵,束长荣,陆立婷,陈程,郑传波,镇凡,麻晗. 不锈钢复合板的焊接工艺研究现状及进展. 中国冶金. 2025(01): 15-31 .
    3. 冀伟,张鹏. 波形钢腹板梁T形接头焊接仿真分析与试验研究. 哈尔滨工程大学学报. 2024(04): 691-698 .
    4. 陈坤,余薇,范益,李伟,王晓斌,邹家生,刘坤. 轧制组织对304L/Q345R复合板焊接裂纹敏感性的影响规律. 江苏科技大学学报(自然科学版). 2024(05): 32-38 .
    5. 翁华晶,冯美艳,江吉彬,陈昌荣,练国富. V型曲面坡口打底焊成形控制与工艺参数优化. 精密成形工程. 2023(02): 188-198 .
    6. 董宏斌,张涛,张建辉,王金霞,李学燕. 3000m~3不锈钢复合板球罐的制造与安装. 压力容器. 2023(01): 82-88 .
    7. 刘文明,欧阳凯,张新明,张朝明,程新路,陈成. 焊后热处理对S30408/Q345R复合板焊接接头残余应力的影响. 材料热处理学报. 2023(03): 217-226 .
    8. 李昌敏,冯伟,郭瑞鹏,杨国涛. 考虑区域影响的焊接残余应力超声法试验研究. 热加工工艺. 2023(13): 136-141+147 .
    9. 未晓丽,王景玄. 装配式钢管混凝土梁柱节点的抗震性能研究. 青海大学学报. 2023(04): 78-85+108 .
    10. 蒋军,房务农,刘孟德,周杨. Q370R/S31603爆炸焊复合板制4000 m~3厚壁球罐焊接工艺及接头性能. 电焊机. 2023(11): 71-76 .
    11. 王超冉,李东. 铁素体不锈钢/16Mn钢厚板异种钢电子束焊接接头的组织与冲击韧性. 机械工程材料. 2022(02): 35-42 .
    12. 刘德佳,扎学安,王伟雄,唐延川,赵龙志,徐宏明. 304/Q235复合板多主元高熵化焊缝的组织与性能. 金属热处理. 2022(08): 63-70 .

    Other cited types(5)

Catalog

    Article views (297) PDF downloads (81) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return