Advanced Search
WANG Lin, HUA Xueming, SHEN Chen, ZHANG Yuelong, LI Fang, ZHOU Wenlu, DING Yuhan. Investigation on microstructure characteristics of Ti-48Al alloy fabricated using twin-wire directed energy deposition-plasma arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 1-6. DOI: 10.12073/j.hjxb.20230309001
Citation: WANG Lin, HUA Xueming, SHEN Chen, ZHANG Yuelong, LI Fang, ZHOU Wenlu, DING Yuhan. Investigation on microstructure characteristics of Ti-48Al alloy fabricated using twin-wire directed energy deposition-plasma arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 1-6. DOI: 10.12073/j.hjxb.20230309001

Investigation on microstructure characteristics of Ti-48Al alloy fabricated using twin-wire directed energy deposition-plasma arc

More Information
  • Received Date: March 08, 2023
  • Available Online: November 20, 2023
  • Ti-48Al alloy is fabricated successfully using plasma arc powred twin wire-directed energy deposition-arc, and its microstructure characteristic before and after heat treatment is systematically investigated. The results show that as-deposited Ti-48Al alloy consists of α2 and γ phase. The microstructure is characterized by the alternatively distributed dendritic grain and fully lamellar colony along the building direction for as-deposited Ti-48Al alloy, and there is interdendritic Al element segregation in the dendritic grain region. After heat treatment in 1340 ℃/10 h/furnace cooling, the duplex microstructure with fine grain size is obtained, and the microstructure heterogeneity is significantly improved, the α2 phase content is obviously increased, the preferred orientation of microstructure is also weakened.

  • [1]
    陈玉勇, 时国浩, 杜之明, 等. 增材制造TiAl合金的研究进展[J]. 金属学报, 2023: 1 − 25. doi: 10.11900/0412.1961.2022.00582

    Chen Yuyong, Shi Guohao, Du Zhiming, et al. Research progress on additive manufacturing TiAl alloy[J]. Acta metallurgica sinica, 2023: 1 − 25. doi: 10.11900/0412.1961.2022.00582
    [2]
    Emiralioglu A, Unal R. Additive manufacturing of gamma titanium aluminide alloys: a review[J]. Journal of Materials Science, 2022, 57(7): 4441 − 4466. doi: 10.1007/s10853-022-06896-4
    [3]
    Huang H T, Ding H S, Xu X S, et al. Phase transformation and microstructure evolution of a beta-solidified gamma-TiAl alloy[J]. Journal of Alloys and Compounds:An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2021, 860: 158082.
    [4]
    Kothari K, Radhakrishnan R, Wereley N M. Advances in gamma titanium aluminides and their manufacturing techniques[J]. Progress in Aerospace Sciences, 2012, 55(12): 1 − 16.
    [5]
    Soliman H A, Elbestawi M. Titanium aluminides processing by additive manufacturing – a review[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(9-10): 5583 − 5614. doi: 10.1007/s00170-022-08728-w
    [6]
    Cheng F, Wang H M, Wu Y, et al. Microstructure evolution and tensile property of TiAl alloy using continuous direct energy deposition technique[J]. Journal of Alloys and Compounds, 2022, 906: 164309.
    [7]
    Cho K, Kawabata H, Hayashi T, et al. Peculiar microstructural evolution and tensile properties of β-containing γ-TiAl alloys fabricated by electron beam melting[J]. Additive Manufacturing, 2021, 46: 102091. doi: 10.1016/j.addma.2021.102091
    [8]
    Zhang X Y, Li C W, Zheng M Y, et al. Chemical, microstructure, and mechanical property of TiAl alloys produced by high-power direct laser deposition[J]. Journal of Materials Science & Technology, 2022, 117: 99 − 108.
    [9]
    Wimler D, Lindemann J, Reith M, et al. Designing advanced intermetallic titanium aluminide alloys for additive manufacturing[J]. Intermetallics, 2021, 131: 107109. doi: 10.1016/j.intermet.2021.107109
    [10]
    Kan W, Chen B, Jin C, et al. Microstructure and mechanical properties of a high Nb-TiAl alloy fabricated by electron beam melting[J]. Materials & Design, 2018, 160: 611 − 623.
    [11]
    Yue H Y, Chen Y Y, Wang X P, et al. Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting[J]. Journal of Alloys and Compounds, 2018, 750: 617 − 625.
    [12]
    Tang H P, Yang G Y, Jia W P, et al. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting[J]. Materials Science & Engineering, A. Structural Materials:Properties, Misrostructure and Processing, 2015, 636: 103 − 107.
    [13]
    蔡笑宇, 董博伦, 王俊哲, 等. 热处理对GTA增材制造TiAl合金组织与性能的调控[J]. 焊接学报, 2022, 43(3): 7 − 12. doi: 10.12073/j.hjxb.20210921002

    Cai Xiaoyu, Dong Bolun, Wang Junzhe, et al. Control of the microstructure and mechanical properties of GTA-based wire arc additive manufactured TiAl alloys using post heat treatment[J]. Transactions of the China Welding Institution, 2022, 43(3): 7 − 12. doi: 10.12073/j.hjxb.20210921002
    [14]
    Ma Y, Cuiuri D, Hoye N, et al. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding[J]. Materials Science & Engineering, A. Structural Materials:Properties, Misrostructure and Processing, 2015, 631: 230 − 240.
    [15]
    Ma Y, Cuiuri D, Shen C, et al. Effect of interpass temperature on in-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding[J]. Additive Manufacturing, 2015, 8: 71 − 77. doi: 10.1016/j.addma.2015.08.001
    [16]
    Ma Y, Cuiuri D, Hoye N, et al. Effects of wire feed conditions on in situ alloying and additive layer manufacturing of titanium aluminides using gas tungsten arc welding[J]. Journal of Materials Research, 2014, 29(17): 2066 − 2071. doi: 10.1557/jmr.2014.203
    [17]
    Cai X Y, Dong B L, Yin X L, et al. Wire arc additive manufacturing of titanium aluminide alloys using two-wire TOP-TIG welding: Processing, microstructures, and mechanical properties[J]. Additive Manufacturing, 2020, 35: 101344. doi: 10.1016/j.addma.2020.101344
    [18]
    刘齐, 张萌, 付乐琪, 等. 原位合金化双丝电弧增材制造γ-TiAl组织性能研究[J]. 稀有金属材料与工程, 2020, 49(11): 3919 − 3924.

    Liu Qi, Zhang Meng, Fu Leqi, et al. Microstructure and properties of γ-TiAl fabricated by in-situ alloying assisted double-wire arc additive manufacturing[J]. Rare Metal Materials and Engineering, 2020, 49(11): 3919 − 3924.
    [19]
    Zhao P K, Fang K, Tang C, et al. Effect of interlayer cooling time on the temperature field of 5356-TIG wire arc additive manufacturing[J]. China Welding, 2021, 30(2): 17 − 24.
    [20]
    蔡笑宇, 董博伦, 殷宪铼, 等. 预热温度对GTA增材制造钛铝合金组织及性能的影响[J]. 焊接学报, 2021, 42(10): 14 − 21.

    Cai Xiaoyu, Dong Bolun, Yin Xianlai, et al. Influences of preheating temperatures on the microstructures and mechanical properties of GTA additive manufactured TiAl based alloy[J]. Transactions of the China Welding Institution, 2021, 42(10): 14 − 21.
    [21]
    Yue H Y, Peng H, Li R F, et al. Effect of heat treatment on the microstructure and anisotropy of tensile properties of TiAl alloy produced via selective electron beam melting[J]. Materials Science & Engineering, 2021, 803: 140473.
    [22]
    Zhou S D, Peng P, Xu Y L, et al. Investigation on microstructure and mechanical properties of heat-treated Ti-47.5Al–3Nb-3.5Cr alloy[J]. Materials Science & Engineering, 2022, 832: 142366.
    [23]
    Imayev R M, Imayev V M, Oehring M, et al. Alloy design concepts for refined gamma titanium aluminide based alloys[J]. Intermetallics, 2007, 15(4): 451 − 460. doi: 10.1016/j.intermet.2006.05.003
  • Related Articles

    [1]ZHOU Yaju, YIN Shengming, XIA Yongzhong, YI Guoqiang, XUE Lihong, YAN Youwei. Effect of heat treatment on the microstructure and mechanical properties of wire arc additively manufactured ferrite/martensitic steel for nuclear applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 18-26. DOI: 10.12073/j.hjxb.20221011001
    [2]YIN Yuhuan, ZENG Caiyou, GAO Han, ZHANG Tiemin, QI Bojin, CONG Baoqiang. Effect of heat treatment on microstructure evolution and mechanical properties of 2219 aluminum alloy joint as fabricated by double-pulsed TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 42-49. DOI: 10.12073/j.hjxb.20211102003
    [3]CAI Xiaoyu, DONG Bolun, WANG Junzhe, LIN Sanbao. Control of the microstructure and mechanical properties of GTA-based wire arc additive manufactured TiAl alloys using post heat treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 7-12. DOI: 10.12073/j.hjxb.20210921002
    [4]JIA Zhihong, WAN Xiaohui, GUO Delun. Study on Heat-treated microstructure of GH4169 superalloy deposited by UHFP-GTAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 154-160. DOI: 10.12073/j.hjxb.2019400330
    [5]GOU Jian, WANG Zhijiang, HU Shengsun, TIAN Yinbao. Effects of CMT+P process and post heat treatment on microstructure and properties of TC4 component by additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 31-35,46. DOI: 10.12073/j.hjxb.2019400308
    [6]HE Jianchao, ZHANG Tiancang, LI Ju. Effect of heat treatment on microstructure and hardness of Ti2AlNb linear friction welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 119-124. DOI: 10.12073/j.hjxb.2019400111
    [7]WANG Xijing, SUN Guiping. Effect of heat treatment on microstructure and properties of thermomechanical affected zone of high-strength aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 1-4.
    [8]LEI Yucheng, ZHANG Zhen, CHEN Xizhang, NIE Jiajun. Effect of heat treatment on plasma arc welded joint of SiCp/6061Al MMCs[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 9-12.
    [9]WANG Da-yong, FENG Ji-cai, XU Wei. Effect of heat treatment on microstructures and mechanical properties of Al-Li-Cu alloy TIG welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 23-25,50.
    [10]Wang Xiaoyu, Liu Aiguo, Zhang Xiuzhi. Heat Treatment Strengthening of Al-Li Alloy 2091 Welded Joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 222-225.
  • Cited by

    Periodical cited type(1)

    1. 孟美情,韩俭,朱瀚钊,梁哲滔,蔡养川,张欣,田银宝. 基于多丝电弧增材制造研究现状. 材料工程. 2025(05): 46-62 .

    Other cited types(1)

Catalog

    Article views (339) PDF downloads (100) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return