Citation: | LIU Chen, WEI Shitong, WU Dong, LU Shanping. Corrosion behavior of 9Cr heat-resistant steel deposited metal with different Si contents in lead-bismuth[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 98-103. DOI: 10.12073/j.hjxb.20221129002 |
GIF. Technology roadmap update for generation IV nuclear energy systems [R]. OECD Nuclear Energy Agency for the Generation IV International Forum, 2014.
|
Lorusso P, Bassini S, Del Nevo A, et al. GEN-IV LFR development: Status & perspectives[J]. Progress in Nuclear Energy, 2018, 105: 318 − 31. doi: 10.1016/j.pnucene.2018.02.005
|
Yvon P, Carré F. Structural materials challenges for advanced reactor systems[J]. Journal of Nuclear Materials, 2009, 385(2): 217 − 222. doi: 10.1016/j.jnucmat.2008.11.026
|
Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735 − 758. doi: 10.1016/j.actamat.2012.11.004
|
Fazio C, Balbaud F. 2 - Corrosion phenomena induced by liquid metals in Generation IV reactors [M]. Structural Materials for Generation IV Nuclear Reactors. Woodhead Publishing, 2017.
|
Kohyama A, Hishinuma A, Gelles D S, et al. Low-activation ferritic and martensitic steels for fusion application[J]. Journal of Nuclear Materials, 1996, 233-237: 138 − 147. doi: 10.1016/S0022-3115(96)00327-3
|
Zhang J, Li N. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1): 351 − 377.
|
Del Giacco M, Weisenburger A, Mueller G. Fretting corrosion in liquid lead of structural steels for lead-cooled nuclear systems: Preliminary study of the influence of temperature and time[J]. Journal of Nuclear Materials, 2012, 423(1): 79 − 86.
|
Giuranno D, Novakovic R, Tomasi C, et al. Evaluation of corrosion phenomena of T91 steel in stagnant liquid lead at high operational temperatures[J]. Corrosion, 2020, 76(11): 1 − 11.
|
Gorynin I V, Karzov G P, Markov V G, et al. Structural materials for atomic reactors with liquid metal heat-transfer agents in the form of lead or lead-bismuth alloy[J]. Metal Science and Heat Treatment, 1999, 41(9-10): 384 − 388.
|
Kurata Y. Corrosion behavior of Si-enriched steels for nuclear applications in liquid lead–bismuth[J]. Journal of Nuclear Materials, 2013, 437(1): 401 − 408.
|
Kondo M, Takahashi M. Corrosion resistance of Si- and Al-rich steels in flowing lead–bismuth[J]. Journal of Nuclear Materials, 2006, 356(1): 203 − 212.
|
Shi Q, Liu J, Luan H, et al. Oxidation behavior of ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600 ℃[J]. Journal of Nuclear Materials, 2015, 457: 135 − 141. doi: 10.1016/j.jnucmat.2014.11.018
|
Chen G, Lei Y, Zhu Q, et al. Corrosion behavior of CLAM steel weld bead in flowing Pb-Bi at 550 ℃[J]. Journal of Nuclear Materials, 2019, 515: 187 − 198. doi: 10.1016/j.jnucmat.2018.12.038
|
Mustari A P A, Takahashi M. Study on corrosion properties of welded ferritic-martensitic steels in liquid lead-bismuth at 600 ℃[J]. Journal of Power and Energy Systems, 2011, 5(1): 69 − 76. doi: 10.1299/jpes.5.69
|
雷玉成, 陈钢, 朱强, 等. CLAM钢焊缝在550 ℃流动的铅铋合金中的腐蚀行为[J]. 焊接学报, 2019, 40(4): 1 − 7. doi: 10.12073/j.hjxb.2019400091
Lei Yucheng, Chen Gang, Zhu Qiang, et al. Corrosion behavior of CLAM steel weld bead in flowing Pb-Bi alloy at 550 ℃[J]. Transactions of the China Welding Institution, 2019, 40(4): 1 − 7. doi: 10.12073/j.hjxb.2019400091
|
Xu Z, Song L, Zhao Y, et al. The formation mechanism and effect of amorphous SiO2 on the corrosion behaviour of Fe-Cr-Si ODS alloy in LBE at 550 ℃[J/OL]. Corrosion Science, 2021, 190: 109634.
|
Wang J, Lu S, Rong L, et al. Effect of silicon on the oxidation resistance of 9wt.% Cr heat resistance steels in 550 ℃ lead-bismuth eutectic[J]. Corrosion Science, 2016, 111: 13 − 25. doi: 10.1016/j.corsci.2016.04.020
|
Short M P, Ballinger R G. A functionally graded composite for service in high-temperature lead- and lead-bismuth-cooled nuclear reactors—I: Design[J]. Nuclear Technology, 2017, 177: 366 − 381.
|
Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials - Review[J]. Corrosion Science, 2015, 90: 5 − 22. doi: 10.1016/j.corsci.2014.10.006
|
Yamaki E, Ginestar K, Martinelli L. Dissolution mechanism of 316L in lead-bismuth eutectic at 500 °C[J]. Corrosion Science, 2011, 53: 3075 − 3085. doi: 10.1016/j.corsci.2011.05.031
|
[1] | XIAO Jun, WANG Zhihao, CHEN Shujun, GAI Shengnan. Piezo-driven short-circuiting metal transfer in GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 17-22. DOI: 10.12073/j.hjxb.20220427001 |
[2] | CHEN Chao, FAN Chenglei, LIN Sanbao, YANG Chunli. Effect of ultrasonic mode on GMAW short circuiting transfer and weld appearance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 7-10. DOI: 10.12073/j.hjxb.20190124004 |
[3] | XIA Shengquan, SUN Xiaoming. Three-dimensional transient numerical simulation of melting pool in CO2 short-circuiting arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 115-119. |
[4] | CHEN Maoai, JIANG Yuanning, WU Chuansong. Optimization of welding current waveform parameters in controlled short circuiting transfer GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 79-82. |
[5] | GAO Yanfeng, XIAO Jianhua, ZHANG Hua. Welding currents filtering of compulsively short circuiting transfer in rotational arc MAG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 25-28. |
[6] | FENG Yuehai, LIU jia, YIN Shuyan, WANG Kehong. The new type of low spatter and high energy waveform control technology for short-circuiting welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 45-48. |
[7] | HUANG Pengfei, LU Zhenyang, SUN Zhigang, WEI Jian, YIN Shuyan. Control and process of high speed short circuit arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 9-12. |
[8] | GU Jinmao, HUANG Pengfei, LU Zhenyang, YIN Shuyan. The current cycle control of AC short circuit transition welding method and system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 73-76. |
[9] | LU Zhenyang, LI Yan, HUANG Pengfei, WEI Jian, YIN Shuyan. Optimum parameters of short circuit droplet transfer gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 17-20. |
[10] | WANG Guangwei, CAI Yan, HUA Xueming, WU Yixiong. Modeling and analysis of droplet forming in gas metal arc welding short circuiting transfer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 73-76. |
1. |
赵一帆,王莹,刘瑞涛,孟令坤,宋白钰,赵津,王重阳. Stability analysis of CO_2 gas shielded welding short-circuit transition process based on GMAW dynamic model. China Welding. 2023(04): 55-68 .
![]() |