Advanced Search
WU Gang, CHEN Tian, YU LiangHui, LIU Zhipeng. Research on automatic classification of spot welding joint strength based on PSO-SVM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20220829001
Citation: WU Gang, CHEN Tian, YU LiangHui, LIU Zhipeng. Research on automatic classification of spot welding joint strength based on PSO-SVM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20220829001

Research on automatic classification of spot welding joint strength based on PSO-SVM

More Information
  • Available Online: June 24, 2023
  • Spot welding is one of the main connection methods of automobile parts, and the tensile and Shear strength of its joints are important factors to evaluate the connection quality. On the basis of preparing a large number of spot welding samples, this investigation conducted ultrasonic signal detection on the joints of each sample. Using signal processing methods to obtain time-domain, frequency-domain, and wavelet packet eigenvalues, a grading standard for the tensile and shear strength of spot welded joints was established by conducting tensile and shear tests on spot welded samples. According to the test data, BP neural network and neural network classifier based on Particle swarm optimization support vector machines (PSO-SVM) are trained. Finally, the accuracy of two neural network models for spot welding strength classification was compared by inputting feature value parameters with different data set. The experimental results show that the PSO-SVM neural network combined with 9 ultrasonic signal eigenvalues has a spot welding strength classification accuracy of 95%.
  • 王斌, 李升, 朱富慧, 等. 基于超声无损检测的扩散连接界面缺陷尺寸评估[J]. 焊接学报, 2020, 41(8): 34 − 38. doi: 10.12073/j.hjxb.20200323004

    Wang Bin, Li Sheng, Zhu Fuhui, et al. Evaluation of interface defect size in diffusion bonding based on ultrasonic non-destructive testing[J]. Transactions of the China Welding Institution, 2020, 41(8): 34 − 38. doi: 10.12073/j.hjxb.20200323004
    Abbas Moghanizadeh. Evaluation of the physical properties of spot welding using ultrasonic testing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85: 535 − 545. doi: 10.1007/s00170-015-7952-y
    Esmaeil Mirmahdi. Numerical and experimental modeling of spot welding defects by ultrasonic testing on similar sheets and dissimilar sheets[J]. Russian Journal of Nondestructive Testing, 2020, 56: 620 − 634. doi: 10.1134/S1061830920080069
    赵大伟, 王元勋, 梁东杰, 等. 基于功率信号动态特征的钛合金电阻点焊熔核直径预测[J]. 焊接学报, 2022, 43(1): 55 − 59. doi: 10.12073/j.hjxb.20201026001

    Zhao Dawei, Wang Yuanxun, Liang Dongjie, et al. Prediction of nugget diameter in titanium alloy resistance spot welding based on dynamic characteristics of power signals[J]. Transactions of the China Welding Institution, 2022, 43(1): 55 − 59. doi: 10.12073/j.hjxb.20201026001
    杨鑫华, 贾昕, 朱平, 等. 基于信息增益率的点焊接头疲劳性能影响因素分析[J]. 焊接学报, 2020, 41(10): 73 − 78.

    Yang Xinhua, Jia Xin, Zhu Ping, et al. Analysis of factors affecting the fatigue performance of spot welded joints based on information gain rate[J]. Transactions of the China Welding Institution, 2020, 41(10): 73 − 78.
    Elangovan S, Anand K. , Prakasan K. Parametric optimization of ultrasonic metal welding using response surface methodology and genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63: 561 − 572. doi: 10.1007/s00170-012-3920-y
    Hyo-Sun Yu, Byung-Guk Ahn. A study on ultrasonic test for evaluation of spot weldability in automotive materials[J]. KSME International Journal, 13, 775-782.
    Siljama Oskar, Koskinen Tuomas, Jessen-Juhler Oskari, et al. Automated flaw detection in multi-channel phased array ultrasonic data using machine learning[J]. Journal of Nondestructive Evaluation, 2021, 40(3): 67 − 80. doi: 10.1007/s10921-021-00796-4
    张佳莹, 丛森, 刚铁, 林尚扬. 基于频率–相位编码信号激励的焊缝超声检测分析[J]. 焊接学报, 2018, 39(7): 7-11, 41.

    Zhang Jiaying, Cong Sen, Gangtie, Lin Shangyang Analysis of Weld Ultrasonic Testing Based on Frequency Phase Encoded Signal Excitation[J]. Transactions of the China Welding Institution, 2018, 39 (7): 7-11, 41.
    Wang Ting, Xu Chunsheng, Ma Guocheng, et al. Analysis of ultrasonic C-scan image features and image processing for spot welding[J]. China Welding, 2015, 24(2): 52 − 56.
    Liu J, Xu G C, Gu X P, et al. Ultrasonic test of resistance spot welds based on wavelet package analysis[J]. Ultrasonics, 2014, 56: 557 − 565.
    Zhao Yiying, Huang Qingjiu. Image enhancement of robot welding seam based on wavelet transform and contrast guidance[J]. International Journal of Innovative Computing, Information and Control, 2022, 18(1): 149 − 159.
    Yang P, Li Q. Wavelet transform based feature extraction for ultrasonic flaw signal classification[J]. Neural Computing & Applications, 2014, 24(3-4): 817 − 826.
    吴刚, 关山月, 汪小凯, 等. 薄板点焊超声检测信号特征分析与缺陷识别[J]. 焊接学报, 2019, 40(4): 112 − 118.

    Wu Gang, Guan Shanyue, Wang Xiaokai, et al. Signal feature analysis and defect identification of ultrasonic testing for thin plate spot welding[J]. Transactions of the China Welding Institution, 2019, 40(4): 112 − 118.
    吴刚, 关山月, 汪小凯, 等. 基于超声信号增益补偿的电阻点焊熔核直径评估算法[J]. 中国测试, 2018, 44(8): 13 − 19.

    Wu Gang, Guan Shanyue, Wang Xiaokai, et al. Evaluation algorithm for nugget diameter in resistance spot welding based on ultrasonic signal gain compensation[J]. China Measurement & Test, 2018, 44(8): 13 − 19.
    Xu Mengxi, Shi Jianqiang, Chen Wei, et al. A Band selection method for hyperspectral image based on particle swarm optimization algorithm with dynamic sub-swarms[J]. Journal of Signal Processing Systems, 2018, 90: 1269 − 1279. doi: 10.1007/s11265-018-1348-9
    Fei Ye. Evolving the SVM model based on a hybrid method using swarm optimization techniques in combination with a genetic algorithm for medical diagnosis[J]. Multimedia Tools and Applications, 2018, 77: 3889 − 3918. doi: 10.1007/s11042-016-4233-1
  • Related Articles

    [1]WU Gang, CHEN Tian, YU Lianghui, LIU Zhipeng. Study on classification of tensile shear strength of spot welding joints based on PSO-SVM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 120-128. DOI: 10.12073/j.hjxb.20230820001
    [2]LI Chengwen, JI Haibiao, YAN Zhaohui, LIU Zhihong, MA Jianguo, WANG Rui, WU Jiefeng. Prediction of residual stress and deformation of 316L multi-layer multi-pass welding based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 20-28. DOI: 10.12073/j.hjxb.20230520002
    [3]DONG Jianwei, HU Jianming, LUO Zhen. Quality prediction of aluminum alloy resistance spot welding based on correlation analysis and SSA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 13-18, 32. DOI: 10.12073/j.hjxb.20230226001
    [4]HONG Haitao, WANG Lu, HAN Yongquan, CHANG Le. Reconstructed quality evaluation of asymmetric arc emission coefficient by PSO-OSSART algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 63-68. DOI: 10.12073/j.hjxb.20210823001
    [5]GAO Changlin, SONG Yanli, ZUO Hongzhou, ZHANG Cheng. Cause diagnosis of welding defects based on adaptive PSO-BP neural network with dynamic weighting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 98-106. DOI: 10.12073/j.hjxb.20210515001
    [6]ZHANG Aihua, GAO Folai, NIU Xiaoge, LUO Huan. Prediction of gray-spot area in rail flash butt welded joint based on BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 11-14.
    [7]GAO Xiangdong, LIN Jun, XIAO Zhenlin, CHEN Xiaohui. Recognition model of arc welding penetration using ICA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 33-36.
    [8]LU Zhongliang, LI Dichen, LU Bingheng, ZHANG Anfeng. Application of LS-SVM network in LDF forming process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 9-12.
    [9]LUO Aimin, SHEN Caihong, YI Bing, LI Kun. Method of multi-classification by improved binary tree based on SVM for welding defects recongnition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 51-54.
    [10]MA Yue-zhou, QU Min, CHEN Jian-hong. SVM classifier for wire extension monitoring using arc sound signal in GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 21-26.

Catalog

    Article views (104) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return