Citation: | WU Gang, CHEN Tian, YU LiangHui, LIU Zhipeng. Research on automatic classification of spot welding joint strength based on PSO-SVM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20220829001 |
王斌, 李升, 朱富慧, 等. 基于超声无损检测的扩散连接界面缺陷尺寸评估[J]. 焊接学报, 2020, 41(8): 34 − 38. doi: 10.12073/j.hjxb.20200323004
Wang Bin, Li Sheng, Zhu Fuhui, et al. Evaluation of interface defect size in diffusion bonding based on ultrasonic non-destructive testing[J]. Transactions of the China Welding Institution, 2020, 41(8): 34 − 38. doi: 10.12073/j.hjxb.20200323004
|
Abbas Moghanizadeh. Evaluation of the physical properties of spot welding using ultrasonic testing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85: 535 − 545. doi: 10.1007/s00170-015-7952-y
|
Esmaeil Mirmahdi. Numerical and experimental modeling of spot welding defects by ultrasonic testing on similar sheets and dissimilar sheets[J]. Russian Journal of Nondestructive Testing, 2020, 56: 620 − 634. doi: 10.1134/S1061830920080069
|
赵大伟, 王元勋, 梁东杰, 等. 基于功率信号动态特征的钛合金电阻点焊熔核直径预测[J]. 焊接学报, 2022, 43(1): 55 − 59. doi: 10.12073/j.hjxb.20201026001
Zhao Dawei, Wang Yuanxun, Liang Dongjie, et al. Prediction of nugget diameter in titanium alloy resistance spot welding based on dynamic characteristics of power signals[J]. Transactions of the China Welding Institution, 2022, 43(1): 55 − 59. doi: 10.12073/j.hjxb.20201026001
|
杨鑫华, 贾昕, 朱平, 等. 基于信息增益率的点焊接头疲劳性能影响因素分析[J]. 焊接学报, 2020, 41(10): 73 − 78.
Yang Xinhua, Jia Xin, Zhu Ping, et al. Analysis of factors affecting the fatigue performance of spot welded joints based on information gain rate[J]. Transactions of the China Welding Institution, 2020, 41(10): 73 − 78.
|
Elangovan S, Anand K. , Prakasan K. Parametric optimization of ultrasonic metal welding using response surface methodology and genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63: 561 − 572. doi: 10.1007/s00170-012-3920-y
|
Hyo-Sun Yu, Byung-Guk Ahn. A study on ultrasonic test for evaluation of spot weldability in automotive materials[J]. KSME International Journal, 13, 775-782.
|
Siljama Oskar, Koskinen Tuomas, Jessen-Juhler Oskari, et al. Automated flaw detection in multi-channel phased array ultrasonic data using machine learning[J]. Journal of Nondestructive Evaluation, 2021, 40(3): 67 − 80. doi: 10.1007/s10921-021-00796-4
|
张佳莹, 丛森, 刚铁, 林尚扬. 基于频率–相位编码信号激励的焊缝超声检测分析[J]. 焊接学报, 2018, 39(7): 7-11, 41.
Zhang Jiaying, Cong Sen, Gangtie, Lin Shangyang Analysis of Weld Ultrasonic Testing Based on Frequency Phase Encoded Signal Excitation[J]. Transactions of the China Welding Institution, 2018, 39 (7): 7-11, 41.
|
Wang Ting, Xu Chunsheng, Ma Guocheng, et al. Analysis of ultrasonic C-scan image features and image processing for spot welding[J]. China Welding, 2015, 24(2): 52 − 56.
|
Liu J, Xu G C, Gu X P, et al. Ultrasonic test of resistance spot welds based on wavelet package analysis[J]. Ultrasonics, 2014, 56: 557 − 565.
|
Zhao Yiying, Huang Qingjiu. Image enhancement of robot welding seam based on wavelet transform and contrast guidance[J]. International Journal of Innovative Computing, Information and Control, 2022, 18(1): 149 − 159.
|
Yang P, Li Q. Wavelet transform based feature extraction for ultrasonic flaw signal classification[J]. Neural Computing & Applications, 2014, 24(3-4): 817 − 826.
|
吴刚, 关山月, 汪小凯, 等. 薄板点焊超声检测信号特征分析与缺陷识别[J]. 焊接学报, 2019, 40(4): 112 − 118.
Wu Gang, Guan Shanyue, Wang Xiaokai, et al. Signal feature analysis and defect identification of ultrasonic testing for thin plate spot welding[J]. Transactions of the China Welding Institution, 2019, 40(4): 112 − 118.
|
吴刚, 关山月, 汪小凯, 等. 基于超声信号增益补偿的电阻点焊熔核直径评估算法[J]. 中国测试, 2018, 44(8): 13 − 19.
Wu Gang, Guan Shanyue, Wang Xiaokai, et al. Evaluation algorithm for nugget diameter in resistance spot welding based on ultrasonic signal gain compensation[J]. China Measurement & Test, 2018, 44(8): 13 − 19.
|
Xu Mengxi, Shi Jianqiang, Chen Wei, et al. A Band selection method for hyperspectral image based on particle swarm optimization algorithm with dynamic sub-swarms[J]. Journal of Signal Processing Systems, 2018, 90: 1269 − 1279. doi: 10.1007/s11265-018-1348-9
|
Fei Ye. Evolving the SVM model based on a hybrid method using swarm optimization techniques in combination with a genetic algorithm for medical diagnosis[J]. Multimedia Tools and Applications, 2018, 77: 3889 − 3918. doi: 10.1007/s11042-016-4233-1
|