Advanced Search
Guobin ZHANG, Meng JIANG, Xi CHEN, Ao CHEN, Zhenglong LEI, Yanbin CHEN. A comparison study of characteristics of weld formation, residual stress and distortion of laser welding under atmospheric pressure and vacuum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 34-41. DOI: 10.12073/j.hjxb.20220503002
Citation: Guobin ZHANG, Meng JIANG, Xi CHEN, Ao CHEN, Zhenglong LEI, Yanbin CHEN. A comparison study of characteristics of weld formation, residual stress and distortion of laser welding under atmospheric pressure and vacuum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 34-41. DOI: 10.12073/j.hjxb.20220503002

A comparison study of characteristics of weld formation, residual stress and distortion of laser welding under atmospheric pressure and vacuum

More Information
  • Received Date: May 02, 2022
  • Available Online: August 04, 2022
  • In high-power laser welding, the welding process usually exhibits unstable and defects frequently occurs when higher laser power is used to achieve deeper penetration. At present, it is well recognized that laser welding under vacuum is an effective method to solve the above problems. In this work, a comparison study of weld formation, residual stress and distortion in full-penetration laser welding of medium-thick plates under atmospheric pressure and vacuum was conducted based on a research program of experiment and numerical simulation. The results showed the depth of penetration can be significantly increased by decreasing the ambient pressure, and the required laser power for a 10 mm-thick full-penetration decreased from 10 kW (atmospheric pressure) to 6 kW and a sounder weld quality was obtained under vacuum. The transverse residual stress, longitudinal residual stress and deformation showed a similar distribution under both atmospheric pressure and vacuum. However, the peak values of the residual stress and deformation under vacuum are significantly lower than those for atmospheric pressure due to the lower heat input and the larger depth to width ratio of the weld.
  • Weglowski M S, Blacha S, Phillips A. Electron beam welding - Techniques and trends - Review[J]. Vacuum, 2016, 130: 72 − 92. doi: 10.1016/j.vacuum.2016.05.004
    Kawahito Y, Wang H, Katayama S, et al. Ultra high power (100 kW) fiber laser welding of steel[J]. Optics Letters, 2018, 43(19): 4667 − 4670. doi: 10.1364/OL.43.004667
    Zhang X, Mi G Y, Li S, et al. Study of microstructural inhomogeneity and its effects on mechanical properties of multi-layer laser welded joint[J]. International Journal of Advanced Manufacturing Technology, 2018, 94(5-8): 2163 − 2174. doi: 10.1007/s00170-017-0944-3
    Li R Y, Wang T J, Wang C M, et al. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method[J]. Optics and Laser Technology, 2014, 64: 172 − 183. doi: 10.1016/j.optlastec.2014.04.015
    Li R Y, Yue J, Shao X Y, et al. A study of thick plate ultra-narrow-gap multi-pass multi-layer laser welding technology combined with laser cleaning[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(1-4): 113 − 127. doi: 10.1007/s00170-015-7193-0
    Zhang R L, Tang X H, Xu L D, et al. Mechanism study of thermal fluid flow and weld root hump suppression in full penetration laser welding of Al alloy with alternating magnetic field support[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120759. doi: 10.1016/j.ijheatmasstransfer.2020.120759
    Uestuendag O, Bakir N, Gumenyuk A, et al. Influence of oscillating magnetic field on the keyhole stability in deep penetration laser beam welding[J]. Optics and Laser Technology, 2021, 135: 106715. doi: 10.1016/j.optlastec.2020.106715
    Rethmeier M, Gumenyuk A, Bachmann M. High-power laser beam welding for thick section steels - new perspectives using electromagnetic systems[J]. Science and Technology of Welding and Joining, 2022, 27(1): 43 − 51. doi: 10.1080/13621718.2021.1999763
    李军兆, 孙清洁, 张清华, 等. 空间多位置摆动激光填丝焊接熔池动态行为及焊缝成形[J]. 焊接学报, 2021, 42(10): 35 − 39, 61.

    Li Junzhao, Sun Qingjie, Zhang Qinghua, et al. Dynamic behavior of weld pool and weld forming in space multi-position swing laser wire filling welding[J]. Transactions of the China Welding Institution, 2021, 42(10): 35 − 39, 61.
    Chen C, Zhou H, Wang C, et al. Laser welding of ultra-high strength steel with different oscillating modes[J]. Journal of Manufacturing Processes, 2021, 68: 761 − 769. doi: 10.1016/j.jmapro.2021.06.004
    Uestuendag O, Avilov V, Gumenyuk A, et al. Improvement of filler wire dilution using external oscillating magnetic field at full penetration hybrid laser-arc welding of thick materials[J]. Metals, 2019, 9(5): 594. doi: 10.3390/met9050594
    Lyu F, Wang L, Feng Y, et al. Thermal behavior and microstructure evolution mechanism of Ti6Al4V 80 mm thick plates jointed by laser melting deposition[J]. Journal of Manufacturing Processes, 2021, 71: 12 − 26. doi: 10.1016/j.jmapro.2021.08.021
    Shen X F, Li L, Guo W, et al. Comparison of processing window and porosity distribution in laser welding of 10 mm thick 30CrMnSiA ultrahigh strength between flat (1G) and horizontal (2G) positions[J]. Journal of Laser Applications, 2016, 28(2): 022418. doi: 10.2351/1.4943992
    Han Y Q, Han J, Chen Y, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.
    Arata Y, Oda T. Vacuum laser beam welding: JP62144889-A[P]. 1987−06−29.
    Katayama S, Kobayashi Y, Mizutani M, et al. Effect of vacuum on penetration and defects in laser welding[J]. Journal of Laser Applications, 2001, 13(5): 187 − 192. doi: 10.2351/1.1404413
    Reisgen U, Olschok S, Turner C. Welding of thick plate copper with laser beam welding under vacuum[J]. Journal of Laser Applications, 2017, 29(2): 022402. doi: 10.2351/1.4983165
    Börner C, Kruessel T, Dilger K. Process characteristics of laser beam welding at reduced ambient pressure[C]//Conference on High-Power Laser Materials Processing - Lasers, Beam Delivery, Diagnostics, and Applications II, 2013: 86030M.
    孟圣昊, 司昌健, 任逸群, 等. 中厚板TC4钛合金真空环境激光焊接特性[J]. 焊接学报, 2021, 42(8): 40 − 47, 74. doi: 10.12073/j.hjxb.20201124001

    Meng Shenghao, Si Changjian, Ren Yiqun, et al. Laser welding characteristics of TC4 titanium alloy plate in vacuum environment[J]. Transactions of the China Welding Institution, 2021, 42(8): 40 − 47, 74. doi: 10.12073/j.hjxb.20201124001
    Jiang M, Chen X, Chen Y B, et al. Mitigation of porosity defects in fiber laser welding under low vacuum[J]. Journal of Materials Processing Technology, 2020, 276: 116385. doi: 10.1016/j.jmatprotec.2019.116385
    任朝晖, 刘振, 周世华, 等. 钛合金激光熔丝增材制造的温度场与应力场模拟[J]. 东北大学学报(自然科学版), 2020, 41(4): 551 − 556. doi: 10.12068/j.issn.1005-3026.2020.04.017

    Ren Zhaohui, Liu Zhen, Zhou Shihua, et al. Simulation of temperature field and stress field of titanium alloy laser fuse additive manufacturing[J]. Journal of Northeastern University (Natural Science), 2020, 41(4): 551 − 556. doi: 10.12068/j.issn.1005-3026.2020.04.017
    Yang Z Y, Wang W Y, Zhang J, et al. Effect of fire exposure on residual stresses relief in welded high strength Q690 steel sections[J]. Journal of Constructional Steel Research, 2021, 177: 106455. doi: 10.1016/j.jcsr.2020.106455
    Wang W Y, Wang K, Kodur V, et al. Mechanical properties of high-strength Q690 steel at elevated temperature[J]. Journal of Materials in Civil Engineering, 2018, 30(5): 103010.
    姜梦. 低真空激光焊接特性及热物理过程的试验研究与数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    Jiang Meng. Experimental study and numerical simulation of low vacuum laser welding characteristics and thermal physics process[D]. Harbin: Harbin Institute of Technology, 2020.
    李时春. 万瓦级激光深熔焊接中金属蒸气与熔池耦合行为研究[D]. 长沙: 湖南大学, 2014.

    Li Shichun. Research on coupling behavior of Metal vapor and molten pool in 10000-watt laser Deep fusion Welding[D]. Changsha: Hunan University, 2014.
    唐琪, 陈静青, 陈鹏, 等. 基于有限元的激光增材过程熔化热积累模拟[J]. 焊接学报, 2019, 40(7): 100 − 104. doi: 10.12073/j.hjxb.2019400189

    Tang Qi, Chen Jingqing, Chen Peng, et al. Simulation of melting heat accumulation in laser additive process based on finite element method[J]. Transactions of the China Welding Institution, 2019, 40(7): 100 − 104. doi: 10.12073/j.hjxb.2019400189
  • Cited by

    Periodical cited type(1)

    1. 王志鹏,朱明亮,轩福贞. CrMoV与NiCrMoV异种钢焊接接头的高周疲劳性能及寿命模型. 焊接学报. 2024(07): 67-73 . 本站查看

    Other cited types(0)

Catalog

    Article views (486) PDF downloads (71) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return