Citation: | Guobin ZHANG, Meng JIANG, Xi CHEN, Ao CHEN, Zhenglong LEI, Yanbin CHEN. A comparison study of characteristics of weld formation, residual stress and distortion of laser welding under atmospheric pressure and vacuum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 34-41. DOI: 10.12073/j.hjxb.20220503002 |
Weglowski M S, Blacha S, Phillips A. Electron beam welding - Techniques and trends - Review[J]. Vacuum, 2016, 130: 72 − 92. doi: 10.1016/j.vacuum.2016.05.004
|
Kawahito Y, Wang H, Katayama S, et al. Ultra high power (100 kW) fiber laser welding of steel[J]. Optics Letters, 2018, 43(19): 4667 − 4670. doi: 10.1364/OL.43.004667
|
Zhang X, Mi G Y, Li S, et al. Study of microstructural inhomogeneity and its effects on mechanical properties of multi-layer laser welded joint[J]. International Journal of Advanced Manufacturing Technology, 2018, 94(5-8): 2163 − 2174. doi: 10.1007/s00170-017-0944-3
|
Li R Y, Wang T J, Wang C M, et al. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method[J]. Optics and Laser Technology, 2014, 64: 172 − 183. doi: 10.1016/j.optlastec.2014.04.015
|
Li R Y, Yue J, Shao X Y, et al. A study of thick plate ultra-narrow-gap multi-pass multi-layer laser welding technology combined with laser cleaning[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(1-4): 113 − 127. doi: 10.1007/s00170-015-7193-0
|
Zhang R L, Tang X H, Xu L D, et al. Mechanism study of thermal fluid flow and weld root hump suppression in full penetration laser welding of Al alloy with alternating magnetic field support[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120759. doi: 10.1016/j.ijheatmasstransfer.2020.120759
|
Uestuendag O, Bakir N, Gumenyuk A, et al. Influence of oscillating magnetic field on the keyhole stability in deep penetration laser beam welding[J]. Optics and Laser Technology, 2021, 135: 106715. doi: 10.1016/j.optlastec.2020.106715
|
Rethmeier M, Gumenyuk A, Bachmann M. High-power laser beam welding for thick section steels - new perspectives using electromagnetic systems[J]. Science and Technology of Welding and Joining, 2022, 27(1): 43 − 51. doi: 10.1080/13621718.2021.1999763
|
李军兆, 孙清洁, 张清华, 等. 空间多位置摆动激光填丝焊接熔池动态行为及焊缝成形[J]. 焊接学报, 2021, 42(10): 35 − 39, 61.
Li Junzhao, Sun Qingjie, Zhang Qinghua, et al. Dynamic behavior of weld pool and weld forming in space multi-position swing laser wire filling welding[J]. Transactions of the China Welding Institution, 2021, 42(10): 35 − 39, 61.
|
Chen C, Zhou H, Wang C, et al. Laser welding of ultra-high strength steel with different oscillating modes[J]. Journal of Manufacturing Processes, 2021, 68: 761 − 769. doi: 10.1016/j.jmapro.2021.06.004
|
Uestuendag O, Avilov V, Gumenyuk A, et al. Improvement of filler wire dilution using external oscillating magnetic field at full penetration hybrid laser-arc welding of thick materials[J]. Metals, 2019, 9(5): 594. doi: 10.3390/met9050594
|
Lyu F, Wang L, Feng Y, et al. Thermal behavior and microstructure evolution mechanism of Ti6Al4V 80 mm thick plates jointed by laser melting deposition[J]. Journal of Manufacturing Processes, 2021, 71: 12 − 26. doi: 10.1016/j.jmapro.2021.08.021
|
Shen X F, Li L, Guo W, et al. Comparison of processing window and porosity distribution in laser welding of 10 mm thick 30CrMnSiA ultrahigh strength between flat (1G) and horizontal (2G) positions[J]. Journal of Laser Applications, 2016, 28(2): 022418. doi: 10.2351/1.4943992
|
Han Y Q, Han J, Chen Y, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.
|
Arata Y, Oda T. Vacuum laser beam welding: JP62144889-A[P]. 1987−06−29.
|
Katayama S, Kobayashi Y, Mizutani M, et al. Effect of vacuum on penetration and defects in laser welding[J]. Journal of Laser Applications, 2001, 13(5): 187 − 192. doi: 10.2351/1.1404413
|
Reisgen U, Olschok S, Turner C. Welding of thick plate copper with laser beam welding under vacuum[J]. Journal of Laser Applications, 2017, 29(2): 022402. doi: 10.2351/1.4983165
|
Börner C, Kruessel T, Dilger K. Process characteristics of laser beam welding at reduced ambient pressure[C]//Conference on High-Power Laser Materials Processing - Lasers, Beam Delivery, Diagnostics, and Applications II, 2013: 86030M.
|
孟圣昊, 司昌健, 任逸群, 等. 中厚板TC4钛合金真空环境激光焊接特性[J]. 焊接学报, 2021, 42(8): 40 − 47, 74. doi: 10.12073/j.hjxb.20201124001
Meng Shenghao, Si Changjian, Ren Yiqun, et al. Laser welding characteristics of TC4 titanium alloy plate in vacuum environment[J]. Transactions of the China Welding Institution, 2021, 42(8): 40 − 47, 74. doi: 10.12073/j.hjxb.20201124001
|
Jiang M, Chen X, Chen Y B, et al. Mitigation of porosity defects in fiber laser welding under low vacuum[J]. Journal of Materials Processing Technology, 2020, 276: 116385. doi: 10.1016/j.jmatprotec.2019.116385
|
任朝晖, 刘振, 周世华, 等. 钛合金激光熔丝增材制造的温度场与应力场模拟[J]. 东北大学学报(自然科学版), 2020, 41(4): 551 − 556. doi: 10.12068/j.issn.1005-3026.2020.04.017
Ren Zhaohui, Liu Zhen, Zhou Shihua, et al. Simulation of temperature field and stress field of titanium alloy laser fuse additive manufacturing[J]. Journal of Northeastern University (Natural Science), 2020, 41(4): 551 − 556. doi: 10.12068/j.issn.1005-3026.2020.04.017
|
Yang Z Y, Wang W Y, Zhang J, et al. Effect of fire exposure on residual stresses relief in welded high strength Q690 steel sections[J]. Journal of Constructional Steel Research, 2021, 177: 106455. doi: 10.1016/j.jcsr.2020.106455
|
Wang W Y, Wang K, Kodur V, et al. Mechanical properties of high-strength Q690 steel at elevated temperature[J]. Journal of Materials in Civil Engineering, 2018, 30(5): 103010.
|
姜梦. 低真空激光焊接特性及热物理过程的试验研究与数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2020.
Jiang Meng. Experimental study and numerical simulation of low vacuum laser welding characteristics and thermal physics process[D]. Harbin: Harbin Institute of Technology, 2020.
|
李时春. 万瓦级激光深熔焊接中金属蒸气与熔池耦合行为研究[D]. 长沙: 湖南大学, 2014.
Li Shichun. Research on coupling behavior of Metal vapor and molten pool in 10000-watt laser Deep fusion Welding[D]. Changsha: Hunan University, 2014.
|
唐琪, 陈静青, 陈鹏, 等. 基于有限元的激光增材过程熔化热积累模拟[J]. 焊接学报, 2019, 40(7): 100 − 104. doi: 10.12073/j.hjxb.2019400189
Tang Qi, Chen Jingqing, Chen Peng, et al. Simulation of melting heat accumulation in laser additive process based on finite element method[J]. Transactions of the China Welding Institution, 2019, 40(7): 100 − 104. doi: 10.12073/j.hjxb.2019400189
|
1. |
王志鹏,朱明亮,轩福贞. CrMoV与NiCrMoV异种钢焊接接头的高周疲劳性能及寿命模型. 焊接学报. 2024(07): 67-73 .
![]() |