Citation: | YU Zhangqin, HU Jianhua, YANG Zheng, HUANG Shangyu. Interfacial diffusion process of Cu/Al magnetic pulse semi-solid assisted brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 120-128. DOI: 10.12073/j.hjxb.20211221001 |
Mubiayi M P, Akinlabi E. Friction stir welding of dissimilar materials between aluminium alloys and copper−An overview[C]//Lecture Notes in Engineering & Computer Science, London,UK, 2013, 1990 − 1996.
|
Bergmann J P, Petzoldt F, Schürer R, et al. Solid-state welding of aluminum to copper − case studies[J]. Welding in the World, 2013, 57(4): 541 − 550. doi: 10.1007/s40194-013-0049-z
|
Xu H, Liu C, Silberschmidt V V, et al. Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds[J]. Acta Materialia, 2011, 59(14): 5661 − 5673. doi: 10.1016/j.actamat.2011.05.041
|
Wang C, Liu S, Zhu H, et al. Effect of process parameters on interfacial microstructure and mechanical properties of Al/Cu friction stir lap welding joints[J]. China Welding, 2022, 31(4): 48 − 58.
|
黄尚宇, 黄海川, 雷雨, 等. 一种半固态无钎剂辅助的异种金属钎焊装置及方法: 中国, CN108941828B[P]. 2019-11-26.
Huang Shangyu, Huang Haichuan, Lei Yu, et al. Semi-solid brazing device and method for dissimilar metals without the aid of brazing flux: China, CN108941828B[P]. 2019-11-26.
|
高远, 黄尚宇, 邓凌波, 等. 温度条件对铜管/铝管磁脉冲−半固态复合辅助钎焊接头微观组织的影响[J]. 锻压技术, 2019, 44(10): 169 − 175. doi: 10.13330/j.issn.1000-3940.2019.10.030
Gao Yuan, Huang Shangyu, Deng Lingbo, et al. Influence of temperature condition on microstructure of Cu tube/Al tube brazed joint produced by magnetic pulse and semi-solid composite auxiliary technology[J]. Forging & Stamping Technology, 2019, 44(10): 169 − 175. doi: 10.13330/j.issn.1000-3940.2019.10.030
|
王振东, 黄尚宇, 李佳琪, 等. Zn-Al钎料固相率及组分对Cu/Al管磁脉冲−半固态复合辅助钎焊接头质量的影响初探[J]. 材料科学与工艺, 2020, 28(4): 1 − 7. doi: 10.11951/j.issn.1005-0299.20190061
Wang Zhendong, Huang Shangyu, Li Jiaqi, et al. Preliminary study on the influence of solder solid phase rate and composition of Zn-Al filler metal on the quality of magnetic pulse-semisolid hybrid assisted soldering of Cu/Al tubes[J]. Materials Science and Technology, 2020, 28(4): 1 − 7. doi: 10.11951/j.issn.1005-0299.20190061
|
黄海川, 黄尚宇, 李清宁, 等. 放电电压对Cu/Al管磁脉冲-半固态复合辅助钎焊质量的影响[J]. 塑性工程学报, 2020, 27(2): 60 − 67. doi: 10.3969/j.issn.1007-2012.2020.02.008
Huang Haichuan, Huang Shangyu, Li Qingning, et al. Effect of discharge voltage on quality of Cu/Al tube magnetic pulse-semisolid hybrid assisted brazing[J]. Journal of Plasticity Engineering, 2020, 27(2): 60 − 67. doi: 10.3969/j.issn.1007-2012.2020.02.008
|
邓凌波, 黄尚宇, 杨梅, 等. 集磁器结构对磁脉冲辅助半固态钎焊接头组织和性能的影响[J]. 焊接学报, 2022, 43(1): 48 − 54.
Deng Lingbo, Huang Shangyu, Yang Mei, et al. Effect of magnetic collector structure on microstructure and properties of semi-solid brazing joint assisted by magnetic pulse[J]. Transactions of the China Welding Institution, 2022, 43(1): 48 − 54.
|
Yang J, Zhang J, Qiao J. Molecular dynamics simulations of atomic diffusion during the Al-Cu ultrasonic welding process[J]. Materials, 2019, 12(14): 2306. doi: 10.3390/ma12142306
|
Zhang Tingting, Wang Wenxian, Zhou Jun, et al. Molecular dynamics simulations and experimental investigations of atomic diffusion behavior at bonding interface in an explosively welded Al/Mg alloy composite plate[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(10): 983 − 991. doi: 10.1007/s40195-017-0628-x
|
Chen S Y, Wu Z W, Liu K X, et al. Atomic diffusion behavior in Cu-Al explosive welding process[J]. Journal of Applied Physics, 2013, 113(4): 044901. doi: 10.1063/1.4775788
|
Zhang Yanqiu, Jiang Shuyong. Atomistic investigation on diffusion welding between stainless steel and pure Ni based on molecular dynamics simulation[J]. Materials, 2018, 11(10): 1957. doi: 10.3390/ma11101957
|
Mao Aixia, Zhang Jinping, Yao Shichang, et al. The diffusion behaviors at the Cu-Al solid-liquid interface: A molecular dynamics study[J]. Results in Physics, 2020, 16: 102998. doi: 10.1016/j.rinp.2020.102998
|
Ma Qiuchen, Song Cheng, Zhou Jianli, et al. Dynamic weld evolution during ultrasonic welding of Cu-Al joints[J]. Materials Science and Engineering: A, 2021, 823: 141724. doi: 10.1016/j.msea.2021.141724
|
Samanta A, Xiao S, Shen N, et al. Atomistic simulation of diffusion bonding of dissimilar materials undergoing ultrasonic welding[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103: 879 − 890. doi: 10.1007/s00170-019-03582-9
|
袁晓静, 郭晓辉, 关宁, 等. 微弧等离子增材制造NiCr合金的分子动力学数值模拟[J]. 焊接学报, 2021, 42(8): 25 − 32. doi: 10.12073/j.hjxb.20210131001
Yuan Xiaojing, Guo Xiaohui, Guan Ning, et al. Numerical simulation of molecular dynamics for fabrication of NiCr alloy by microarc plasma additive[J]. Transactions of the China Welding Institution, 2021, 42(8): 25 − 32. doi: 10.12073/j.hjxb.20210131001
|
Dickel D E, Baskes M I, Aslam I, et al. New interatomic potential for Mg-Al-Zn alloys with specific application to dilute Mg-based alloys[J]. Modelling and Simulation in Materials Science and Engineering, 2018, 26(4): 045010. doi: 10.1088/1361-651X/aabaad
|
Liu X Y, Liu C L, Borucki L J. A new investigation of copper's role in enhancing Al-Cu interconnect electromigration resistance from an atomistic view[J]. Acta Materialia, 1999, 47(11): 3227 − 3231. doi: 10.1016/S1359-6454(99)00186-X
|
苏文辉, 刘春林, 刘承蕙. 锌及 β 黄铜的原子间相互作用势函数与高压状态方程[J]. 吉林大学自然科学学报, 1980(1): 69 − 79.
Su Wenhui, Liu Chunlin, Liu Chenghui. The potential functions of interatomic interaction and the high-pressure equations of state for zinc and β-brass[J]. Journal of Natural Science of Jilin University, 1980(1): 69 − 79.
|
[1] | XUE Dingqi, RUAN Pengxiang, CHENG Shiwen, ZHANG Zhongzhong, GENG Haibin, HAN Shaohua. Analysis on manufacturing process for thin-walled circular structure based on wire and arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 42-48. DOI: 10.12073/j.hjxb.20200829003 |
[2] | WANG Hongfeng, WANG Jianli, ZUO Dunwen, SONG Weiwei, DUAN Xinglin. Finite element analysis on friction stir welding of aviation aluminum alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 21-25. |
[3] | ZHU Hai, GUO Yanling, ZHANG Shanshan. Finite element analysis of thermal-mechanical coupled model for friction welded joint of 35Cr2Ni4MoA high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 81-84. |
[4] | HONG Bo, LI Lin, HONG Yuxiang, YANG Jiawang. Finite element analysis of magnetic control arc welding seam tracking sensors[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 5-8. |
[5] | HU Qingxian, WANG Yanhui, YAO Qingjun, WANG Shunyao. Finite element analysis of temperature field during keyholeplasma arc welding using SYSWELD software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 66-69. |
[6] | YE Huan, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on reliability of lead-free soldered joints for CSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 93-96. |
[7] | YANG Iinjuan, SHEN Shiming. Finite element analysis of residual stress of welding repair for gas pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 77-80. |
[8] | ZHANG Mingxian, WU Chuansong, LI Kehai, ZHANG Yuming. FEA based prediction of weld dimension in new DE-GMAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 33-37. |
[9] | WANG Huai-gang, WU Chuan-song, ZHANG Ming-xian. Finite element method analysis of temperature field in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (7): 49-53. |
[10] | WU Yan-qing, PEI Yi, YANG Yong-xing, ZHANG Jian-xun. Finite Element Analysis of Transformation Super-plastic Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 65-68. |
1. |
乔小丽,曹帅,武靖伟,张建晓,黄健康,樊丁. Inconel 600镍基合金PAW+TIG接头微观组织及力学性能. 焊接学报. 2024(06): 105-112 .
![]() |