Advanced Search
YU Zhangqin, HU Jianhua, YANG Zheng, HUANG Shangyu. Interfacial diffusion process of Cu/Al magnetic pulse semi-solid assisted brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 120-128. DOI: 10.12073/j.hjxb.20211221001
Citation: YU Zhangqin, HU Jianhua, YANG Zheng, HUANG Shangyu. Interfacial diffusion process of Cu/Al magnetic pulse semi-solid assisted brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 120-128. DOI: 10.12073/j.hjxb.20211221001

Interfacial diffusion process of Cu/Al magnetic pulse semi-solid assisted brazing

More Information
  • Received Date: December 20, 2021
  • Available Online: April 13, 2023
  • The atomic diffusion process of the magnetic pulse semi-solid assisted brazing interface of copper/aluminum tube was studied by molecular dynamics simulation and experiment. The results show that the atoms at the aluminum side diffusion interface mainly diffused with each other in the disordered atomic layer at the interface, and the diffusion behavior of the elements was not uniform. The diffusion speed of the aluminum matrix atoms to the filler metal was much lower than that of the filler metal atoms to the aluminum matrix. At the copper side interface, the diffusion layer is very thin (about two atomic layers thickness) and the thickness changes are not obvious at the simulated impact speeds. It is found that the simulated diffusion layer thickness increases linearly with the increase of impact speed, which is consistent with the experimental results. According to the simulation and experimental results, the relationship between the simulated interface diffusion layer thickness and the test interface diffusion layer thickness is established under the same or similar impact velocity. The simulation results can well predict the test interface diffusion layer thickness, with a maximum error rate of 2.8%.
  • Mubiayi M P, Akinlabi E. Friction stir welding of dissimilar materials between aluminium alloys and copper−An overview[C]//Lecture Notes in Engineering & Computer Science, London,UK, 2013, 1990 − 1996.
    Bergmann J P, Petzoldt F, Schürer R, et al. Solid-state welding of aluminum to copper − case studies[J]. Welding in the World, 2013, 57(4): 541 − 550. doi: 10.1007/s40194-013-0049-z
    Xu H, Liu C, Silberschmidt V V, et al. Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds[J]. Acta Materialia, 2011, 59(14): 5661 − 5673. doi: 10.1016/j.actamat.2011.05.041
    Wang C, Liu S, Zhu H, et al. Effect of process parameters on interfacial microstructure and mechanical properties of Al/Cu friction stir lap welding joints[J]. China Welding, 2022, 31(4): 48 − 58.
    黄尚宇, 黄海川, 雷雨, 等. 一种半固态无钎剂辅助的异种金属钎焊装置及方法: 中国, CN108941828B[P]. 2019-11-26.

    Huang Shangyu, Huang Haichuan, Lei Yu, et al. Semi-solid brazing device and method for dissimilar metals without the aid of brazing flux: China, CN108941828B[P]. 2019-11-26.
    高远, 黄尚宇, 邓凌波, 等. 温度条件对铜管/铝管磁脉冲−半固态复合辅助钎焊接头微观组织的影响[J]. 锻压技术, 2019, 44(10): 169 − 175. doi: 10.13330/j.issn.1000-3940.2019.10.030

    Gao Yuan, Huang Shangyu, Deng Lingbo, et al. Influence of temperature condition on microstructure of Cu tube/Al tube brazed joint produced by magnetic pulse and semi-solid composite auxiliary technology[J]. Forging & Stamping Technology, 2019, 44(10): 169 − 175. doi: 10.13330/j.issn.1000-3940.2019.10.030
    王振东, 黄尚宇, 李佳琪, 等. Zn-Al钎料固相率及组分对Cu/Al管磁脉冲−半固态复合辅助钎焊接头质量的影响初探[J]. 材料科学与工艺, 2020, 28(4): 1 − 7. doi: 10.11951/j.issn.1005-0299.20190061

    Wang Zhendong, Huang Shangyu, Li Jiaqi, et al. Preliminary study on the influence of solder solid phase rate and composition of Zn-Al filler metal on the quality of magnetic pulse-semisolid hybrid assisted soldering of Cu/Al tubes[J]. Materials Science and Technology, 2020, 28(4): 1 − 7. doi: 10.11951/j.issn.1005-0299.20190061
    黄海川, 黄尚宇, 李清宁, 等. 放电电压对Cu/Al管磁脉冲-半固态复合辅助钎焊质量的影响[J]. 塑性工程学报, 2020, 27(2): 60 − 67. doi: 10.3969/j.issn.1007-2012.2020.02.008

    Huang Haichuan, Huang Shangyu, Li Qingning, et al. Effect of discharge voltage on quality of Cu/Al tube magnetic pulse-semisolid hybrid assisted brazing[J]. Journal of Plasticity Engineering, 2020, 27(2): 60 − 67. doi: 10.3969/j.issn.1007-2012.2020.02.008
    邓凌波, 黄尚宇, 杨梅, 等. 集磁器结构对磁脉冲辅助半固态钎焊接头组织和性能的影响[J]. 焊接学报, 2022, 43(1): 48 − 54.

    Deng Lingbo, Huang Shangyu, Yang Mei, et al. Effect of magnetic collector structure on microstructure and properties of semi-solid brazing joint assisted by magnetic pulse[J]. Transactions of the China Welding Institution, 2022, 43(1): 48 − 54.
    Yang J, Zhang J, Qiao J. Molecular dynamics simulations of atomic diffusion during the Al-Cu ultrasonic welding process[J]. Materials, 2019, 12(14): 2306. doi: 10.3390/ma12142306
    Zhang Tingting, Wang Wenxian, Zhou Jun, et al. Molecular dynamics simulations and experimental investigations of atomic diffusion behavior at bonding interface in an explosively welded Al/Mg alloy composite plate[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(10): 983 − 991. doi: 10.1007/s40195-017-0628-x
    Chen S Y, Wu Z W, Liu K X, et al. Atomic diffusion behavior in Cu-Al explosive welding process[J]. Journal of Applied Physics, 2013, 113(4): 044901. doi: 10.1063/1.4775788
    Zhang Yanqiu, Jiang Shuyong. Atomistic investigation on diffusion welding between stainless steel and pure Ni based on molecular dynamics simulation[J]. Materials, 2018, 11(10): 1957. doi: 10.3390/ma11101957
    Mao Aixia, Zhang Jinping, Yao Shichang, et al. The diffusion behaviors at the Cu-Al solid-liquid interface: A molecular dynamics study[J]. Results in Physics, 2020, 16: 102998. doi: 10.1016/j.rinp.2020.102998
    Ma Qiuchen, Song Cheng, Zhou Jianli, et al. Dynamic weld evolution during ultrasonic welding of Cu-Al joints[J]. Materials Science and Engineering: A, 2021, 823: 141724. doi: 10.1016/j.msea.2021.141724
    Samanta A, Xiao S, Shen N, et al. Atomistic simulation of diffusion bonding of dissimilar materials undergoing ultrasonic welding[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103: 879 − 890. doi: 10.1007/s00170-019-03582-9
    袁晓静, 郭晓辉, 关宁, 等. 微弧等离子增材制造NiCr合金的分子动力学数值模拟[J]. 焊接学报, 2021, 42(8): 25 − 32. doi: 10.12073/j.hjxb.20210131001

    Yuan Xiaojing, Guo Xiaohui, Guan Ning, et al. Numerical simulation of molecular dynamics for fabrication of NiCr alloy by microarc plasma additive[J]. Transactions of the China Welding Institution, 2021, 42(8): 25 − 32. doi: 10.12073/j.hjxb.20210131001
    Dickel D E, Baskes M I, Aslam I, et al. New interatomic potential for Mg-Al-Zn alloys with specific application to dilute Mg-based alloys[J]. Modelling and Simulation in Materials Science and Engineering, 2018, 26(4): 045010. doi: 10.1088/1361-651X/aabaad
    Liu X Y, Liu C L, Borucki L J. A new investigation of copper's role in enhancing Al-Cu interconnect electromigration resistance from an atomistic view[J]. Acta Materialia, 1999, 47(11): 3227 − 3231. doi: 10.1016/S1359-6454(99)00186-X
    苏文辉, 刘春林, 刘承蕙. 锌及 β 黄铜的原子间相互作用势函数与高压状态方程[J]. 吉林大学自然科学学报, 1980(1): 69 − 79.

    Su Wenhui, Liu Chunlin, Liu Chenghui. The potential functions of interatomic interaction and the high-pressure equations of state for zinc and β-brass[J]. Journal of Natural Science of Jilin University, 1980(1): 69 − 79.
  • Related Articles

    [1]XUE Dingqi, RUAN Pengxiang, CHENG Shiwen, ZHANG Zhongzhong, GENG Haibin, HAN Shaohua. Analysis on manufacturing process for thin-walled circular structure based on wire and arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 42-48. DOI: 10.12073/j.hjxb.20200829003
    [2]WANG Hongfeng, WANG Jianli, ZUO Dunwen, SONG Weiwei, DUAN Xinglin. Finite element analysis on friction stir welding of aviation aluminum alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 21-25.
    [3]ZHU Hai, GUO Yanling, ZHANG Shanshan. Finite element analysis of thermal-mechanical coupled model for friction welded joint of 35Cr2Ni4MoA high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 81-84.
    [4]HONG Bo, LI Lin, HONG Yuxiang, YANG Jiawang. Finite element analysis of magnetic control arc welding seam tracking sensors[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 5-8.
    [5]HU Qingxian, WANG Yanhui, YAO Qingjun, WANG Shunyao. Finite element analysis of temperature field during keyholeplasma arc welding using SYSWELD software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 66-69.
    [6]YE Huan, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on reliability of lead-free soldered joints for CSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 93-96.
    [7]YANG Iinjuan, SHEN Shiming. Finite element analysis of residual stress of welding repair for gas pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 77-80.
    [8]ZHANG Mingxian, WU Chuansong, LI Kehai, ZHANG Yuming. FEA based prediction of weld dimension in new DE-GMAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 33-37.
    [9]WANG Huai-gang, WU Chuan-song, ZHANG Ming-xian. Finite element method analysis of temperature field in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (7): 49-53.
    [10]WU Yan-qing, PEI Yi, YANG Yong-xing, ZHANG Jian-xun. Finite Element Analysis of Transformation Super-plastic Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 65-68.
  • Cited by

    Periodical cited type(1)

    1. 乔小丽,曹帅,武靖伟,张建晓,黄健康,樊丁. Inconel 600镍基合金PAW+TIG接头微观组织及力学性能. 焊接学报. 2024(06): 105-112 . 本站查看

    Other cited types(0)

Catalog

    Article views (211) PDF downloads (46) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return