Advanced Search
LI Junzhao, SUN Qingjie, YU Hang, ZHANG Pengcheng, LIU Yibo, ZENG Xianshan. Study on grain size and microstructure of TC4 titanium alloy TIG and laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 57-62, 70. DOI: 10.12073/j.hjxb.20211015001
Citation: LI Junzhao, SUN Qingjie, YU Hang, ZHANG Pengcheng, LIU Yibo, ZENG Xianshan. Study on grain size and microstructure of TC4 titanium alloy TIG and laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 57-62, 70. DOI: 10.12073/j.hjxb.20211015001

Study on grain size and microstructure of TC4 titanium alloy TIG and laser welding joint

More Information
  • Received Date: October 14, 2021
  • Available Online: July 06, 2022
  • The TC4 sheet was welded by TIG and laser welding technology. The effects of TIG welding current, welding speed and laser output power on the grain size, microstructure and microhardness of TC4 titanium alloy welded joint were analyzed. The experimental results show that laser welding had a lower heat input, and the width of weld zone and heat-affected zone was significantly reduced under the condition of complete penetration of TC4 titanium alloy sheet. The grain size of TIG welded joint increased with the increase of heat input. The grain size of welded joint decreased gradually with the increase of distance from the center of weld. The laser welded joint showed the characteristics of widmanstatten structure with the finer acicular martensite α' phase. The microstructure of martensite α' near the heat-affected zone was basket shaped, while the microstructure of martensite α' near the base metal was double phase of untransformed α phase and needle shaped martensite α'. With the increase of the distance from the weld centerline, the martensite content decreased gradually, and the weld microhardness decreased. At the same time, compared with TIG welding, TC4 laser welded joint had higher microhardness.
  • 孙文君, 王善林, 陈玉华, 等. 钛合金先进焊接技术研究现状[J]. 航空制造技术, 2019, 62(18): 63 − 72. doi: 10.16080/j.issn1671-833x.2019.18.063

    Sun Wenjun, Wang Shanlin, Chen Yuhua, wt al. Development of advanced welding technologies for titanium alloys[J]. Aeronautical Manufacturing Technology, 2019, 62(18): 63 − 72. doi: 10.16080/j.issn1671-833x.2019.18.063
    张颖云, 陈素明, 李波. 激光焊接参数对1.2mm TC4钛合金薄板焊缝的影响[J]. 焊管, 2019, 42(9): 26 − 31.

    Zhang Yinyun, Chen Suming, Li Bo. Influence of laser welding parameters on the weld of TC4 titanium alloy with 1.2 mm thickness[J]. Welded Pipe and Tube, 2019, 42(9): 26 − 31.
    马忠贤, 冯军宁, 胡志杰. 钛及钛合金型材研究进展[J]. 世界有色金属, 2016, 24: 52 − 53.

    Ma Zhongxian, Feng Junning, Hu Zhijie. Research and development of titanium and titanium alloys shapes[J]. World Nonferrous Metals, 2016, 24: 52 − 53.
    吴巍, 程广福, 高洪明, 等. TC4合金TIG焊接头组织转变与力学性能分析[J]. 焊接学报, 2009, 30(7): 81 − 84,117. doi: 10.3321/j.issn:0253-360X.2009.07.021

    Wu Wei, Cheng Guangfu, Gao Hongming, et al. Microstructure transformation and mechanical properties of TC4 alloy joints welded by TIG[J]. Transactions of the China Welding Institution, 2009, 30(7): 81 − 84,117. doi: 10.3321/j.issn:0253-360X.2009.07.021
    吴健文, 徐孟嘉, 范文艳, 等. 钛合金快频脉冲柔性波形调制TIG焊接工艺[J]. 机械工程学报, 2020, 56(6): 102 − 109. doi: 10.3901/JME.2020.06.102

    Wu Jianwen, Xu Mengjia, Fan Wenyan, et al. Flexible waveform interpulse TIG welding for titanium alloy[J]. Journal of Mechanical Engineering, 2020, 56(6): 102 − 109. doi: 10.3901/JME.2020.06.102
    杨烁, 宋文清, 曲伸, 等. 薄壁TC4钛合金激光焊缝成形试验研究[J]. 焊接, 2019(1): 5 − 11, 65.

    Yang Shuo, Song Wenqing, Qu Shen, et al. Experimental study on laser weld appearance of thin-walled TC4 titanium alloy[J]. Welding & Joining, 2019(1): 5 − 11, 65.
    Baruah M, Bag S. Influence of pulsation in thermo-mechanical analysis on laser micro-welding of Ti6Al4V alloy[J]. Optics and Laser Technology, 2017, 90: 40 − 51. doi: 10.1016/j.optlastec.2016.11.006
    段爱琴, 王振苏, 彭欢, 等. 咬边缺陷对TC4钛合金激光焊接头静力拉伸形变特征的影响[J]. 焊接学报, 2019, 40(11): 54 − 60, 163. doi: 10.12073/j.hjxb.2019400288

    Duan Aiqin, Wang Zhensu, Peng Huan, et al. Effect of undercut defect on deformation behavior TC4 titanium alloy laser welded butt joint under static tensile loading[J]. Transactions of the China Welding Institution, 2019, 40(11): 54 − 60, 163. doi: 10.12073/j.hjxb.2019400288
    黄炜, 王少刚, 李立泽, 等. 钛合金激光焊及其接头的显微组织与力学性能[J]. 材料开发与应用, 2019, 34(2): 20 − 27.

    Huang Wei, Wang Shaogang, Li Lize, et al. Laser beam welding of titanium alloy and microstructure and mechanical properties of welded joint[J]. Development and Application of Materials, 2019, 34(2): 20 − 27.
    Liu H, Nakata K, Yamamoto N, et al. Microstructural characteristics and mechanical properties in laser beam welds of Ti6Al4V alloy[J]. Journal of Materials Science, 2012, 47(3): 1460 − 1470. doi: 10.1007/s10853-011-5931-8
    Xu Z Z, Dong Z Q, Yu Z H, et al. Relationships between microhardness, microstructure, and grain orientation in laser-welded joints with different welding speeds for Ti6Al4V titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(5): 1277 − 1289. doi: 10.1016/S1003-6326(20)65295-5
  • Related Articles

    [1]ZHONG Pu, LI Liangyu, REN Guochun, WANG Tianqi, GUO Dongbo. "Γ" shaped arc and its promotion method in Tri-Arc dual wire welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 54-60. DOI: 10.12073/j.hjxb.20230827001
    [2]ZHANG Gang, XU Zilong, WANG Kaifei, ZHU Ming, SHI Yu. Analysis of arc and weld pool characteristics in direct current added-pulsed TIG welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 75-81. DOI: 10.12073/j.hjxb.20210524003
    [3]LI Chunkai, XI Baolong, SHI Yu, GU Yufen. Spectral analysis of A-TIG welding arc with fluorides activating flux[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 54-58. DOI: 10.12073/j.hjxb.20210201002
    [4]YIN Yan, WANG Zhanchong, ZHANG Ruihua, YUAN Zhengwei, TA Jinguo. Effect of activating flux on laser arc hybrid welded stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 19-22.
    [5]HUANG Yong, LI Tao, WANG Yanlei. Gas transfer flux activating TIG welding process for aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 101-104.
    [6]YANG Zhou, QI Bojin, CONG Baoqiang, YANG Mingxuan, LI Yulong. Effect of pulse frequency on weld appearance behavior of TC4 titanium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 37-40.
    [7]HUANG Yong, FAN Ding, LIN Tao, LUO Huansheng. Arc assisted activating TIG welding process for stainless steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 1-4.
    [8]ZHU Liang, ZHANG Renjun, TIAN Yuji. TIG arc constricted by rotating ceramic plates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 1-4.
    [9]ZHENG Shaoxian, ZHU Liang, ZHANG Xulei, CHEN Jianhong. Constricting arc characteristic with flux strips[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 57-61.
    [10]WU Jun, ZOU Zengda, WANG Xinhong, LI Qingming. Effect of activating flux on electric arc of TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 85-88.
  • Cited by

    Periodical cited type(7)

    1. 蒋凡,张成钰,徐斌,张国凯,闫朝阳,陈树君. 变极性等离子弧焊技术发展及其在航天制造领域应用现状. 航天制造技术. 2024(03): 15-26 .
    2. 王晨阳,李小平,刘骁,王壮壮. 7075与ER5356铝合金焊丝用于7075铝合金MIG焊接头性能对比研究. 世界有色金属. 2023(13): 145-147 .
    3. 丁亚茹,陈芙蓉. 时效处理后铝合金焊接接头组织和性能的变化. 稀有金属材料与工程. 2021(11): 4051-4058 .
    4. 张忠科,武靖伟,赵华夏. 焊后热处理对钛/铝FSB接头组织及性能的影响. 中国有色金属学报. 2020(04): 739-749 .
    5. 张华,郭启龙,赵常宇,林三宝,石功奇. 双级时效对7050-T7451铝合金搅拌摩擦焊组织及应力腐蚀敏感性的影响. 焊接学报. 2020(06): 1-5+97 . 本站查看
    6. 白凤臣,马文姝,于彦东,宋海江. 热处理对TP304H/R102异种钢焊接接头组织和性能的影响. 焊接. 2020(07): 55-60+63-64 .
    7. 张华,郭启龙,赵常宇,林三宝,石功奇. Influence of two-step aging on structure and stress corrosion sensitivity of friction stir welded 7050-T7451 aluminum alloys. China Welding. 2020(04): 1-6 .

    Other cited types(4)

Catalog

    Article views (491) PDF downloads (88) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return