Advanced Search
HAN Xiaohui, LI Shuaizhen, WU Laijun, TAN Caiwang, LI Gangqing, SONG Xiaoguo. Effects of surface layer microstructure on liquation crack and fatigue properties of 6005A aluminum alloy MIG joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 14-20. DOI: 10.12073/j.hjxb.20210825004
Citation: HAN Xiaohui, LI Shuaizhen, WU Laijun, TAN Caiwang, LI Gangqing, SONG Xiaoguo. Effects of surface layer microstructure on liquation crack and fatigue properties of 6005A aluminum alloy MIG joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 14-20. DOI: 10.12073/j.hjxb.20210825004

Effects of surface layer microstructure on liquation crack and fatigue properties of 6005A aluminum alloy MIG joints

More Information
  • Received Date: August 24, 2021
  • Available Online: April 17, 2022
  • The effects of surface microstructure on liquation cracks and fatigue properties of 6005A aluminum alloy MIG joints used in high-speed train bodies were comparatively studied. The results showed that the second phase near the grain boundary of the coarse-grained microstructure was coarse, resulting in larger thickness of the grain boundary liquid film in the heat-affected zone reaching 8~10 μm, which made the liquefied grain boundary less resistant to tensile stress and more sensitive to liquation cracks. The liquation cracks formed by the surface coarse-grained microstructure become possible crack sources during the fatigue process, which adversely affect the fatigue properties of the joints. Improving the surface microstructure of the base metal could suppress the formation of liquation cracks and improve the fatigue performance of the joint. The fatigue strength of the surface coarse-grained joint was 93 MPa under 1 ×107 cycles, while that of the surface fine-grained joint was 107 MPa.
  • 董晓晶, 李桓, 杨立军, 等. 铝合金多股复合脉冲MIG焊接接头组织及性能分析[J]. 焊接学报, 2019, 40(11): 61 − 67. doi: 10.12073/j.hjxb.2019400289

    Dong Xiaojing, Li Huan, Yang Lijun, et al. Microstructure and mechanical properties of pulse MIG aluminum alloy welded joints by means of a novel multi-strands composite welding wire[J]. Transactions of the China Welding Institution, 2019, 40(11): 61 − 67. doi: 10.12073/j.hjxb.2019400289
    Wang Y, Wei B, Guo Y, et al. Microstructure and mechanical properties of the joint of 6061 aluminum alloy by plasma-MIG hybrid welding[J]. China Welding, 2017, 26(2): 58 − 64.
    Qi Guangbin, Dong Honggang, Yang Jiang, et al. Texture and mechanical properties of metal inert gas welded 6082-T651 aluminum alloy joints[J]. China Welding, 2021, 30(1): 1 − 12.
    邵盈恺, 王玉玺, 杨志斌, 等. 基于熔深优化的7075铝合金等离子-MIG复合焊接热裂纹敏感性[J]. 金属学报, 2018, 54(4): 547 − 556. doi: 10.11900/0412.1961.2017.00357

    Shao Yingkai, Wang Yuxi, Yang Zhibin, et al. Plasma-MIG hybrid welding hot cracking susceptibility of 7075 aluminum alloy based on optimum of weld penetration[J]. Acta Metallurgiga Sinica, 2018, 54(4): 547 − 556. doi: 10.11900/0412.1961.2017.00357
    Huang C, Kou S. Liquation cracking in partial-penetration aluminum welds: Effect of penetration oscillation and backfilling[J]. Welding Journal, 2003, 82(6): 184 − 194.
    王俊, 李芳, 张跃龙, 等. 焊丝中Si元素含量对铝合金接头裂纹敏感性的影响规律及机理[J]. 焊接学报, 2020, 41(1): 55 − 60.

    Wang Jun, Li Fang, Zhang Yuelong, et al. Effect of Si content in welding wire on crack sensitivity of aluminum alloy and its mechanism[J]. Transactions of the China Welding Institution, 2020, 41(1): 55 − 60.
    俞照辉, 严红革, 严军辉, 等. 热影响区连续孔隙状裂纹的表征及产生机理[J]. 焊接学报, 2019, 40(5): 84 − 88. doi: 10.12073/j.hjxb.2019400132

    Yu Zhaohui, Yan Hongge, Yan Junhui, et al. Characterization and formation mechanisms of continuous porosities-llike cracks in the heat-affected zone[J]. Transactions of the China Welding Institution, 2019, 40(5): 84 − 88. doi: 10.12073/j.hjxb.2019400132
    Dong P, Li H M, Sun D Q, et al. Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy[J]. Marerials & Design, 2013, 45: 524 − 531.
    Ji S D, Meng X C, Liu J G, et al. Formation and mechanical properties of stationary shoulder friction stir welded 6005A-T6 aluminum alloy[J]. Marerials & Design, 2014, 62: 113 − 117.
    张健, 雷振, 王旭友. 高速列车6005A铝合金型材焊接热裂纹分析[J]. 焊接学报, 2012, 33(8): 60 − 64.

    Zhang Jian, Lei Zhen, Wang Xuyou. Welded hot crack analysis of 6005A aluminum[J]. Transactions of the China Welding Institution, 2012, 33(8): 60 − 64.
    刘敬萱, 沈健, 李锡武, 等. 6005A-T6铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092 − 2097. doi: 10.11896/cldb.20030110

    Liu Jingxuan, Shen Jian, Li Xiwu, et al. Microstructure and fatigue properties of friction stir welded 6005A-T5 aluminum alloy[J]. Materials Reports, 2021, 35(2): 2092 − 2097. doi: 10.11896/cldb.20030110
    Liu Haobo, Yang Shanglei, Xie Charjie, et al. Mechanisms of fatigue crack initiation and propagation in 6005A CMT welded joint[J]. Journal of alloys and Compounds, 2018, 741: 188 − 196. doi: 10.1016/j.jallcom.2017.12.374
    Birol Yucel. Impact of partial recrystallization on the performance of 6005A tube extrusions[J]. Engineering Failure Analysis, 2010, 17(5): 1110 − 1116. doi: 10.1016/j.engfailanal.2010.01.006
    申澎洋, 唐建国, 叶凌英, 等. 组织不均匀性对6005A铝合金晶间腐蚀性能的影响[J]. 材料研究学报, 2018, 32(10): 751 − 758. doi: 10.11901/1005.3093.2017.708

    Shen Pengyang, Tang Jianguo, Ye Lingying, et al. Effects of microstructure heterogeneity on intergranular corrosion susceptibility of Al-alloy 6005A[J]. Chinese Journal of Materials Research, 2018, 32(10): 751 − 758. doi: 10.11901/1005.3093.2017.708
    张大鹏, 王顺成, 周楠, 等. 粗晶环对无铅2011铝合金挤压棒材力学与切削性能的影响[J]. 强合金加工技术, 2020, 48(7): 24 − 27.

    Zhang Dapeng, Wang Shuncheng, Zhou Nan, et al. Effects of coarse-grained on mechanical properties and cutting performance of lead-free 2011 aluminum alloy extruded bar[J]. Light Alloy Fabrication Technology, 2020, 48(7): 24 − 27.
    刘聪, 袁定旺, 杨修波, 等. 组织不均匀性对铝合金焊接区裂纹的影响[J]. 电子显微学报, 2015, 34(3): 181 − 188. doi: 10.3969/j.issn.1000-6281.2015.03.001

    Liu Cong, Yuan Dingwang, Yang Xiubo, et al. Effects of microstructure heterogeneity on crack behaviors in the welding zones of aluminum alloys parts[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(3): 181 − 188. doi: 10.3969/j.issn.1000-6281.2015.03.001
    李学朝. 铝合金材料组织与金相图谱[M]. 北京: 冶金工业出版社, 2019.

    Li Xuechao. Microstructure and metallographic spectrum of aluminum alloy materials [M]. Beijing: Metallurgical Industry Press, 2019.
    Huang C, Kou S. Partially melted zone in aluminum welds-liquation mechanism and directional solidification[J]. Welding Journal, 2000, 79(5): 113 − 120.
    李乐, 路媛媛, 唐峰, 等. 表面纳米化对镍基高温合金焊接液化裂纹的影响[J]. 焊接学报, 2019, 40(1): 151 − 155. doi: 10.12073/j.hjxb.2019400030

    Li Le, Lu Yuanyuan, Tang Feng, et al. Effect of surface nanocrystallization on welding liquation cracking of nickel-base superalloy[J]. Transactions of the China Welding Institution, 2019, 40(1): 151 − 155. doi: 10.12073/j.hjxb.2019400030
  • Related Articles

    [1]ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12.
    [2]ZHOU Guangtao, GUO Guanglei, FANG Hongyuan. Numerical simulation of temperature field during laser-induced welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 22-26.
    [3]ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36.
    [4]ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104.
    [5]XIONG Zhijun, LI Yongqiang, ZHAO Xihua, LI Min, ZHANG Weihua. Numerical simulation of temperature field in deep penetration laser welding under hot and press condition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 41-44.
    [6]LI Hong-ke, SHI Qing-yu, ZHAO Hai-yan, LI Ting. Auto-adapting heat source model for numerical analysis of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 81-85.
    [7]JIANG You-qing, GU Lei, LIU Jian-hua. Temperature field numerical simulation of YAG-MIG hybrid welding process for thick aluminum alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 104-107.
    [8]WANG Xi-chang, WU Bing, ZUO Cong-jin, LIU Fang-jun. New heat source model for numerical simulation of electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 81-84.
    [9]MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of muli-pass welding temperature field taking account of metal filling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 53-55,59.
    [10]Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29.
  • Cited by

    Periodical cited type(12)

    1. 贾登峰,夏腾辉,杜春平,刘晓刚,刘登峰. 304/Q345R复合板焊接接头微观组织与性能研究. 热加工工艺. 2025(03): 41-44+50 .
    2. 李小兵,束长荣,陆立婷,陈程,郑传波,镇凡,麻晗. 不锈钢复合板的焊接工艺研究现状及进展. 中国冶金. 2025(01): 15-31 .
    3. 冀伟,张鹏. 波形钢腹板梁T形接头焊接仿真分析与试验研究. 哈尔滨工程大学学报. 2024(04): 691-698 .
    4. 陈坤,余薇,范益,李伟,王晓斌,邹家生,刘坤. 轧制组织对304L/Q345R复合板焊接裂纹敏感性的影响规律. 江苏科技大学学报(自然科学版). 2024(05): 32-38 .
    5. 翁华晶,冯美艳,江吉彬,陈昌荣,练国富. V型曲面坡口打底焊成形控制与工艺参数优化. 精密成形工程. 2023(02): 188-198 .
    6. 董宏斌,张涛,张建辉,王金霞,李学燕. 3000m~3不锈钢复合板球罐的制造与安装. 压力容器. 2023(01): 82-88 .
    7. 刘文明,欧阳凯,张新明,张朝明,程新路,陈成. 焊后热处理对S30408/Q345R复合板焊接接头残余应力的影响. 材料热处理学报. 2023(03): 217-226 .
    8. 李昌敏,冯伟,郭瑞鹏,杨国涛. 考虑区域影响的焊接残余应力超声法试验研究. 热加工工艺. 2023(13): 136-141+147 .
    9. 未晓丽,王景玄. 装配式钢管混凝土梁柱节点的抗震性能研究. 青海大学学报. 2023(04): 78-85+108 .
    10. 蒋军,房务农,刘孟德,周杨. Q370R/S31603爆炸焊复合板制4000 m~3厚壁球罐焊接工艺及接头性能. 电焊机. 2023(11): 71-76 .
    11. 王超冉,李东. 铁素体不锈钢/16Mn钢厚板异种钢电子束焊接接头的组织与冲击韧性. 机械工程材料. 2022(02): 35-42 .
    12. 刘德佳,扎学安,王伟雄,唐延川,赵龙志,徐宏明. 304/Q235复合板多主元高熵化焊缝的组织与性能. 金属热处理. 2022(08): 63-70 .

    Other cited types(5)

Catalog

    Article views (374) PDF downloads (54) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return