Citation: | HAN Xiaohui, LI Shuaizhen, WU Laijun, TAN Caiwang, LI Gangqing, SONG Xiaoguo. Effects of surface layer microstructure on liquation crack and fatigue properties of 6005A aluminum alloy MIG joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 14-20. DOI: 10.12073/j.hjxb.20210825004 |
董晓晶, 李桓, 杨立军, 等. 铝合金多股复合脉冲MIG焊接接头组织及性能分析[J]. 焊接学报, 2019, 40(11): 61 − 67. doi: 10.12073/j.hjxb.2019400289
Dong Xiaojing, Li Huan, Yang Lijun, et al. Microstructure and mechanical properties of pulse MIG aluminum alloy welded joints by means of a novel multi-strands composite welding wire[J]. Transactions of the China Welding Institution, 2019, 40(11): 61 − 67. doi: 10.12073/j.hjxb.2019400289
|
Wang Y, Wei B, Guo Y, et al. Microstructure and mechanical properties of the joint of 6061 aluminum alloy by plasma-MIG hybrid welding[J]. China Welding, 2017, 26(2): 58 − 64.
|
Qi Guangbin, Dong Honggang, Yang Jiang, et al. Texture and mechanical properties of metal inert gas welded 6082-T651 aluminum alloy joints[J]. China Welding, 2021, 30(1): 1 − 12.
|
邵盈恺, 王玉玺, 杨志斌, 等. 基于熔深优化的7075铝合金等离子-MIG复合焊接热裂纹敏感性[J]. 金属学报, 2018, 54(4): 547 − 556. doi: 10.11900/0412.1961.2017.00357
Shao Yingkai, Wang Yuxi, Yang Zhibin, et al. Plasma-MIG hybrid welding hot cracking susceptibility of 7075 aluminum alloy based on optimum of weld penetration[J]. Acta Metallurgiga Sinica, 2018, 54(4): 547 − 556. doi: 10.11900/0412.1961.2017.00357
|
Huang C, Kou S. Liquation cracking in partial-penetration aluminum welds: Effect of penetration oscillation and backfilling[J]. Welding Journal, 2003, 82(6): 184 − 194.
|
王俊, 李芳, 张跃龙, 等. 焊丝中Si元素含量对铝合金接头裂纹敏感性的影响规律及机理[J]. 焊接学报, 2020, 41(1): 55 − 60.
Wang Jun, Li Fang, Zhang Yuelong, et al. Effect of Si content in welding wire on crack sensitivity of aluminum alloy and its mechanism[J]. Transactions of the China Welding Institution, 2020, 41(1): 55 − 60.
|
俞照辉, 严红革, 严军辉, 等. 热影响区连续孔隙状裂纹的表征及产生机理[J]. 焊接学报, 2019, 40(5): 84 − 88. doi: 10.12073/j.hjxb.2019400132
Yu Zhaohui, Yan Hongge, Yan Junhui, et al. Characterization and formation mechanisms of continuous porosities-llike cracks in the heat-affected zone[J]. Transactions of the China Welding Institution, 2019, 40(5): 84 − 88. doi: 10.12073/j.hjxb.2019400132
|
Dong P, Li H M, Sun D Q, et al. Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy[J]. Marerials & Design, 2013, 45: 524 − 531.
|
Ji S D, Meng X C, Liu J G, et al. Formation and mechanical properties of stationary shoulder friction stir welded 6005A-T6 aluminum alloy[J]. Marerials & Design, 2014, 62: 113 − 117.
|
张健, 雷振, 王旭友. 高速列车6005A铝合金型材焊接热裂纹分析[J]. 焊接学报, 2012, 33(8): 60 − 64.
Zhang Jian, Lei Zhen, Wang Xuyou. Welded hot crack analysis of 6005A aluminum[J]. Transactions of the China Welding Institution, 2012, 33(8): 60 − 64.
|
刘敬萱, 沈健, 李锡武, 等. 6005A-T6铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092 − 2097. doi: 10.11896/cldb.20030110
Liu Jingxuan, Shen Jian, Li Xiwu, et al. Microstructure and fatigue properties of friction stir welded 6005A-T5 aluminum alloy[J]. Materials Reports, 2021, 35(2): 2092 − 2097. doi: 10.11896/cldb.20030110
|
Liu Haobo, Yang Shanglei, Xie Charjie, et al. Mechanisms of fatigue crack initiation and propagation in 6005A CMT welded joint[J]. Journal of alloys and Compounds, 2018, 741: 188 − 196. doi: 10.1016/j.jallcom.2017.12.374
|
Birol Yucel. Impact of partial recrystallization on the performance of 6005A tube extrusions[J]. Engineering Failure Analysis, 2010, 17(5): 1110 − 1116. doi: 10.1016/j.engfailanal.2010.01.006
|
申澎洋, 唐建国, 叶凌英, 等. 组织不均匀性对6005A铝合金晶间腐蚀性能的影响[J]. 材料研究学报, 2018, 32(10): 751 − 758. doi: 10.11901/1005.3093.2017.708
Shen Pengyang, Tang Jianguo, Ye Lingying, et al. Effects of microstructure heterogeneity on intergranular corrosion susceptibility of Al-alloy 6005A[J]. Chinese Journal of Materials Research, 2018, 32(10): 751 − 758. doi: 10.11901/1005.3093.2017.708
|
张大鹏, 王顺成, 周楠, 等. 粗晶环对无铅2011铝合金挤压棒材力学与切削性能的影响[J]. 强合金加工技术, 2020, 48(7): 24 − 27.
Zhang Dapeng, Wang Shuncheng, Zhou Nan, et al. Effects of coarse-grained on mechanical properties and cutting performance of lead-free 2011 aluminum alloy extruded bar[J]. Light Alloy Fabrication Technology, 2020, 48(7): 24 − 27.
|
刘聪, 袁定旺, 杨修波, 等. 组织不均匀性对铝合金焊接区裂纹的影响[J]. 电子显微学报, 2015, 34(3): 181 − 188. doi: 10.3969/j.issn.1000-6281.2015.03.001
Liu Cong, Yuan Dingwang, Yang Xiubo, et al. Effects of microstructure heterogeneity on crack behaviors in the welding zones of aluminum alloys parts[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(3): 181 − 188. doi: 10.3969/j.issn.1000-6281.2015.03.001
|
李学朝. 铝合金材料组织与金相图谱[M]. 北京: 冶金工业出版社, 2019.
Li Xuechao. Microstructure and metallographic spectrum of aluminum alloy materials [M]. Beijing: Metallurgical Industry Press, 2019.
|
Huang C, Kou S. Partially melted zone in aluminum welds-liquation mechanism and directional solidification[J]. Welding Journal, 2000, 79(5): 113 − 120.
|
李乐, 路媛媛, 唐峰, 等. 表面纳米化对镍基高温合金焊接液化裂纹的影响[J]. 焊接学报, 2019, 40(1): 151 − 155. doi: 10.12073/j.hjxb.2019400030
Li Le, Lu Yuanyuan, Tang Feng, et al. Effect of surface nanocrystallization on welding liquation cracking of nickel-base superalloy[J]. Transactions of the China Welding Institution, 2019, 40(1): 151 − 155. doi: 10.12073/j.hjxb.2019400030
|
[1] | ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12. |
[2] | ZHOU Guangtao, GUO Guanglei, FANG Hongyuan. Numerical simulation of temperature field during laser-induced welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 22-26. |
[3] | ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36. |
[4] | ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104. |
[5] | XIONG Zhijun, LI Yongqiang, ZHAO Xihua, LI Min, ZHANG Weihua. Numerical simulation of temperature field in deep penetration laser welding under hot and press condition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 41-44. |
[6] | LI Hong-ke, SHI Qing-yu, ZHAO Hai-yan, LI Ting. Auto-adapting heat source model for numerical analysis of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 81-85. |
[7] | JIANG You-qing, GU Lei, LIU Jian-hua. Temperature field numerical simulation of YAG-MIG hybrid welding process for thick aluminum alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 104-107. |
[8] | WANG Xi-chang, WU Bing, ZUO Cong-jin, LIU Fang-jun. New heat source model for numerical simulation of electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 81-84. |
[9] | MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of muli-pass welding temperature field taking account of metal filling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 53-55,59. |
[10] | Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29. |