Citation: | HAN Jiao, HAN Yongquan, HONG Haitao, WANG Xuelong. Arc behavior of plasma-MIG hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 45-49. DOI: 10.12073/j.hjxb.20210702001 |
Holzer M, Hofmann K, Mann V, et al. Change of hot cracking susceptibility in welding of high strength aluminum alloy AA 7075[J]. Physics Procedia, 2016, 83: 463 − 471. doi: 10.1016/j.phpro.2016.08.048
|
Ericsson M, R Sandström. Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG[J]. International Journal of Fatigue, 2003, 25(12): 1379 − 1387. doi: 10.1016/S0142-1123(03)00059-8
|
Essers W G, Liefkens A C. Plasma-MIG welding developed by Philips[J]. Machinery and Production Engineering, 1972, 1(11): 632 − 633.
|
Ton H. Physical properties of the plasma-MIG welding arc[J]. Journal of Physics D:Applied Physics, 1975, 8(8): 922 − 933. doi: 10.1088/0022-3727/8/8/006
|
陈树君, 王旭平, 张亮, 等. 等离子-MIG复合焊接熔滴过渡及电弧耦合特性研究[J]. 焊接, 2014(2): 3 − 7.
Chen Shujun, Wang Xuping, Zhang Liang, et al. Study on droplet transfer and arc coupling characteristics of plasma-MIG hybrid welding[J]. Welding & Joining, 2014(2): 3 − 7.
|
Bai Y, Gao H M, Qiu L. Droplet transition for plasma-MIG welding on aluminum alloys[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(12): 2234 − 2239. doi: 10.1016/S1003-6326(10)60634-6
|
Hertel M U. Füssel, Schnick M. Numerical simulation of the plasma–MIG process—interactions of the arcs, droplet detachment and weld pool formation[J]. Welding in the World, 2014, 58(1): 85 − 92. doi: 10.1007/s40194-013-0095-6
|
Ono K, Liu Z, Era T, et al. Development of a plasma MIG welding system for aluminum[J]. Welding International, 2009, 23(11): 805 − 809. doi: 10.1080/09507110902836945
|
Cai D T, Han S G, Zheng S D, et al. Plasma-MIG hybrid welding process of 5083 marine aluminum alloy[J]. Materials Science Forum, 2016, 850: 519 − 525. doi: 10.4028/www.scientific.net/MSF.850.519
|
Yang T, Xiong J, Chen H. Effect of process parameters on tensile strength in plasma-MIG hybrid welding for 2219 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9-12): 2413 − 2421. doi: 10.1007/s00170-015-7901-9
|
Wang Y J, Wei B, Guo Y Y, et al. Microstructure and mechanical properties of the joint of 6061 aluminum alloy by plasma-MIG hybrid welding[J]. China Welding, 2017, 26(2): 58 − 64.
|
Guo Y, Pan H, Ren L, et al. An investigation on plasma-MIG hybrid welding of 5083 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98: 1433 − 1440. doi: 10.1007/s00170-018-2206-4
|
Hong H, Han Y, Du M, et al. Investigation on droplet momentum in VPPA-GMAW hybrid welding of aluminum alloys[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5): 1 − 8.
|
Han Y, Tong J, Hong H, et al. The influence of hybrid arc coupling mechanism on GMAW arc in VPPA-GMAW hybrid welding of aluminum alloys[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101: 1 − 6. doi: 10.1007/s00170-018-2906-9
|
陈芙蓉, 刘成豪, 李男. 超声冲击时间对7A52铝合金VPPA-MIG焊接接头的影响[J]. 焊接学报, 2020, 41(9): 39 − 43. doi: 10.12073/j.hjxb.20200403003
Chen Furong, Liu Chenghao, Li Nan. Effect of ultrasonic impact time on VPPA-MIG welded joint of 7A52 aluminum alloy[J]. Transactions of the China Welding Institution, 2020, 41(9): 39 − 43. doi: 10.12073/j.hjxb.20200403003
|
洪海涛, 韩永全, 童嘉晖, 等. 铝合金VPPA-MIG复合焊接电弧形态及伏安特性[J]. 焊接学报, 2016, 37(9): 65 − 69.
Hong Haitao, Han Yongquan, Tong Jiahui, et al. Aluminum alloy VPPA-MIG composite welding arc shape and volt – ampere characteristics[J]. Transactions of the China Welding Institution, 2016, 37(9): 65 − 69.
|
Reis R P, Souza M D , Scotti A. Models to describe plasma jet, arc trajectory and arc blow formation in arc welding[J]. Welding in the World. 2011, 55 (3-4): 24-32.
|
[1] | XU Nan, XU Yuzhui, GAO Tianxu, SONG Qining, BAO Yefeng. Influence of welding thermal cycle on grain structure of 5083 aluminum alloy weld by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 27-33. DOI: 10.12073/j.hjxb.20240315001 |
[2] | XIAO Wenbo, HE Yinshui, YUAN Haitao, MA Guohong. Synchronous real-time detection of weld bead geometry and the welding torch in galvanized steel GAMW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 78-82. DOI: 10.12073/j.hjxb.20201021001 |
[3] | CUI Bing1,2, PENG Yun2, PENG Mengdu2, AN Tongbang2. Effects of weld thermal cycle on microstructure and properties of heataffected zone of Q890 processed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 35-39. DOI: 10.12073/j.hjxb.20150427004 |
[4] | LIU Haodong, HU Fangyou, CUI Aiyong, LI Hongbo, HUANG Fei. Experimental on thermal cycle of laser welding with ultrasonic processing across different phases[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 13-17. |
[5] | LÜ Xiaochun, HE Peng, QIN Jian, DU Bing, HU Zhongquan. Effect of welding thermal cycle on microstructure and properties of intercritically reheated coarse grained heat affected zone in SA508-3 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 47-49. |
[6] | WU Dong, LU Shanping, LI Dianzhong. Effect of welding thermal cycle on high temperature mechanical property of Ni-Fe base superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 69-72. |
[7] | HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. Designment of test program system for welding thermal cycle in weld zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 93-96. |
[8] | HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. In-situ detection of weld metal thermal cycle of 10CrMo910 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 105-107. |
[9] | CHEN Yu-hua, WANG Yong. Numerical simulation of thermal cycle of in-service welding onto active pipeline based on SYSWELD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 85-88. |
[10] | YAO Shang-wei, ZHAO Lu-yu, XU Ke, WANG Ren-fu. Effect of welding thermal cycle on toughness of continuous cast-ing steel center[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 97-100. |
1. |
赵忠华,吴海荣,谢洪志,张桐源,郭晶. 薄板钛合金激光焊接接头力学性能研究. 飞机设计. 2025(02): 66-69+80 .
![]() | |
2. |
吕泽阳,王宇宙,刘何意. 钛合金对接与角接氩弧焊缝性能研究. 冶金与材料. 2025(05): 73-75 .
![]() | |
3. |
冯栋,周卫涛,颉文峰. 焊接工艺对薄壁环形钛合金焊缝成形及承载能力的影响. 焊接. 2023(04): 55-59 .
![]() | |
4. |
乔永丰,雷玉成,姚奕强,王泽宇,朱强. 焊接方法对316L不锈钢焊缝抗辐照损伤性能的影响. 焊接学报. 2023(05): 77-83+94+133-134 .
![]() | |
5. |
马寅,韩晓辉,李刚卿,杨志斌,宋东哲,靳月强. TC4钛合金激光-MIG复合焊接头组织性能. 电焊机. 2023(08): 93-97+114 .
![]() | |
6. |
曾俊谚,庄园,杨涛,钟玉婷,杨响明. 基于飞秒激光的钛合金表面微纳米结构制备及腐蚀行为. 焊接. 2023(08): 37-43 .
![]() | |
7. |
孙修圣. 钛管道K-TIG深熔焊工艺研究及应用. 压力容器. 2023(09): 23-30 .
![]() |