Advanced Search
HAN Jiao, HAN Yongquan, HONG Haitao, WANG Xuelong. Arc behavior of plasma-MIG hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 45-49. DOI: 10.12073/j.hjxb.20210702001
Citation: HAN Jiao, HAN Yongquan, HONG Haitao, WANG Xuelong. Arc behavior of plasma-MIG hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 45-49. DOI: 10.12073/j.hjxb.20210702001

Arc behavior of plasma-MIG hybrid welding of aluminum alloy

More Information
  • Received Date: July 01, 2021
  • Accepted Date: January 25, 2022
  • Available Online: January 27, 2022
  • It is found that in the plasma-MIG hybrid welding of aluminum alloy, when the plasma arc welding current is 130 A and the MIG welding current is 180 A (base current is 95 A), the resistance of MIG arc near the plasma arc in the base current time is small, and the voltage of MIG arc in the hybrid welding is lower than that in the single MIG welding in the pulse base period, and the main ionization medium of the MIG arc biased towards the plasma arc is Ar. When the MIG welding current increases to 240 A (base current is 122 A), the above phenomenon disappears. Due to the thermal inertia of the welding arc, when the MIG arc is biased towards the plasma arc in the base current period, the MIG arc will still be biased towards the plasma arc in the pulse current rising stage and when the current has just reached the peak current, the MIG arc voltage in the hybrid welding is higher than that in the single MIG welding. When the MIG arc is biased towards plasma arc in hybrid welding, the stability of MIG arc decreases. With the increase of MIG welding current, the arc stability increases.
  • Holzer M, Hofmann K, Mann V, et al. Change of hot cracking susceptibility in welding of high strength aluminum alloy AA 7075[J]. Physics Procedia, 2016, 83: 463 − 471. doi: 10.1016/j.phpro.2016.08.048
    Ericsson M, R Sandström. Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG[J]. International Journal of Fatigue, 2003, 25(12): 1379 − 1387. doi: 10.1016/S0142-1123(03)00059-8
    Essers W G, Liefkens A C. Plasma-MIG welding developed by Philips[J]. Machinery and Production Engineering, 1972, 1(11): 632 − 633.
    Ton H. Physical properties of the plasma-MIG welding arc[J]. Journal of Physics D:Applied Physics, 1975, 8(8): 922 − 933. doi: 10.1088/0022-3727/8/8/006
    陈树君, 王旭平, 张亮, 等. 等离子-MIG复合焊接熔滴过渡及电弧耦合特性研究[J]. 焊接, 2014(2): 3 − 7.

    Chen Shujun, Wang Xuping, Zhang Liang, et al. Study on droplet transfer and arc coupling characteristics of plasma-MIG hybrid welding[J]. Welding & Joining, 2014(2): 3 − 7.
    Bai Y, Gao H M, Qiu L. Droplet transition for plasma-MIG welding on aluminum alloys[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(12): 2234 − 2239. doi: 10.1016/S1003-6326(10)60634-6
    Hertel M U. Füssel, Schnick M. Numerical simulation of the plasma–MIG process—interactions of the arcs, droplet detachment and weld pool formation[J]. Welding in the World, 2014, 58(1): 85 − 92. doi: 10.1007/s40194-013-0095-6
    Ono K, Liu Z, Era T, et al. Development of a plasma MIG welding system for aluminum[J]. Welding International, 2009, 23(11): 805 − 809. doi: 10.1080/09507110902836945
    Cai D T, Han S G, Zheng S D, et al. Plasma-MIG hybrid welding process of 5083 marine aluminum alloy[J]. Materials Science Forum, 2016, 850: 519 − 525. doi: 10.4028/www.scientific.net/MSF.850.519
    Yang T, Xiong J, Chen H. Effect of process parameters on tensile strength in plasma-MIG hybrid welding for 2219 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9-12): 2413 − 2421. doi: 10.1007/s00170-015-7901-9
    Wang Y J, Wei B, Guo Y Y, et al. Microstructure and mechanical properties of the joint of 6061 aluminum alloy by plasma-MIG hybrid welding[J]. China Welding, 2017, 26(2): 58 − 64.
    Guo Y, Pan H, Ren L, et al. An investigation on plasma-MIG hybrid welding of 5083 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98: 1433 − 1440. doi: 10.1007/s00170-018-2206-4
    Hong H, Han Y, Du M, et al. Investigation on droplet momentum in VPPA-GMAW hybrid welding of aluminum alloys[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5): 1 − 8.
    Han Y, Tong J, Hong H, et al. The influence of hybrid arc coupling mechanism on GMAW arc in VPPA-GMAW hybrid welding of aluminum alloys[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101: 1 − 6. doi: 10.1007/s00170-018-2906-9
    陈芙蓉, 刘成豪, 李男. 超声冲击时间对7A52铝合金VPPA-MIG焊接接头的影响[J]. 焊接学报, 2020, 41(9): 39 − 43. doi: 10.12073/j.hjxb.20200403003

    Chen Furong, Liu Chenghao, Li Nan. Effect of ultrasonic impact time on VPPA-MIG welded joint of 7A52 aluminum alloy[J]. Transactions of the China Welding Institution, 2020, 41(9): 39 − 43. doi: 10.12073/j.hjxb.20200403003
    洪海涛, 韩永全, 童嘉晖, 等. 铝合金VPPA-MIG复合焊接电弧形态及伏安特性[J]. 焊接学报, 2016, 37(9): 65 − 69.

    Hong Haitao, Han Yongquan, Tong Jiahui, et al. Aluminum alloy VPPA-MIG composite welding arc shape and volt – ampere characteristics[J]. Transactions of the China Welding Institution, 2016, 37(9): 65 − 69.
    Reis R P, Souza M D , Scotti A. Models to describe plasma jet, arc trajectory and arc blow formation in arc welding[J]. Welding in the World. 2011, 55 (3-4): 24-32.
  • Related Articles

    [1]XU Nan, XU Yuzhui, GAO Tianxu, SONG Qining, BAO Yefeng. Influence of welding thermal cycle on grain structure of 5083 aluminum alloy weld by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 27-33. DOI: 10.12073/j.hjxb.20240315001
    [2]XIAO Wenbo, HE Yinshui, YUAN Haitao, MA Guohong. Synchronous real-time detection of weld bead geometry and the welding torch in galvanized steel GAMW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 78-82. DOI: 10.12073/j.hjxb.20201021001
    [3]CUI Bing1,2, PENG Yun2, PENG Mengdu2, AN Tongbang2. Effects of weld thermal cycle on microstructure and properties of heataffected zone of Q890 processed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 35-39. DOI: 10.12073/j.hjxb.20150427004
    [4]LIU Haodong, HU Fangyou, CUI Aiyong, LI Hongbo, HUANG Fei. Experimental on thermal cycle of laser welding with ultrasonic processing across different phases[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 13-17.
    [5]LÜ Xiaochun, HE Peng, QIN Jian, DU Bing, HU Zhongquan. Effect of welding thermal cycle on microstructure and properties of intercritically reheated coarse grained heat affected zone in SA508-3 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 47-49.
    [6]WU Dong, LU Shanping, LI Dianzhong. Effect of welding thermal cycle on high temperature mechanical property of Ni-Fe base superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 69-72.
    [7]HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. Designment of test program system for welding thermal cycle in weld zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 93-96.
    [8]HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. In-situ detection of weld metal thermal cycle of 10CrMo910 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 105-107.
    [9]CHEN Yu-hua, WANG Yong. Numerical simulation of thermal cycle of in-service welding onto active pipeline based on SYSWELD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 85-88.
    [10]YAO Shang-wei, ZHAO Lu-yu, XU Ke, WANG Ren-fu. Effect of welding thermal cycle on toughness of continuous cast-ing steel center[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 97-100.
  • Cited by

    Periodical cited type(7)

    1. 赵忠华,吴海荣,谢洪志,张桐源,郭晶. 薄板钛合金激光焊接接头力学性能研究. 飞机设计. 2025(02): 66-69+80 .
    2. 吕泽阳,王宇宙,刘何意. 钛合金对接与角接氩弧焊缝性能研究. 冶金与材料. 2025(05): 73-75 .
    3. 冯栋,周卫涛,颉文峰. 焊接工艺对薄壁环形钛合金焊缝成形及承载能力的影响. 焊接. 2023(04): 55-59 .
    4. 乔永丰,雷玉成,姚奕强,王泽宇,朱强. 焊接方法对316L不锈钢焊缝抗辐照损伤性能的影响. 焊接学报. 2023(05): 77-83+94+133-134 . 本站查看
    5. 马寅,韩晓辉,李刚卿,杨志斌,宋东哲,靳月强. TC4钛合金激光-MIG复合焊接头组织性能. 电焊机. 2023(08): 93-97+114 .
    6. 曾俊谚,庄园,杨涛,钟玉婷,杨响明. 基于飞秒激光的钛合金表面微纳米结构制备及腐蚀行为. 焊接. 2023(08): 37-43 .
    7. 孙修圣. 钛管道K-TIG深熔焊工艺研究及应用. 压力容器. 2023(09): 23-30 .

    Other cited types(5)

Catalog

    Article views (308) PDF downloads (61) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return