Advanced Search
HAN Qinglin, LI Xinlei, ZHANG Guangjun. Fabrication of mild steel/high-strength steel composite structure by double wire twin electrode gas tungsten arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 88-93. DOI: 10.12073/j.hjxb.20210421002
Citation: HAN Qinglin, LI Xinlei, ZHANG Guangjun. Fabrication of mild steel/high-strength steel composite structure by double wire twin electrode gas tungsten arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 88-93. DOI: 10.12073/j.hjxb.20210421002

Fabrication of mild steel/high-strength steel composite structure by double wire twin electrode gas tungsten arc additive manufacturing

More Information
  • Received Date: April 20, 2021
  • Available Online: February 16, 2022
  • The mild steel/high-strength steel composite structure can reduce the amount of alloying elements on the premise of ensuring the bearing capacity, and reduce the cost. An efficient and stable method of double wire twin electrode gas tungsten arc additive manufacturing was proposed in this paper. The mild steel wire H08Mn2Si and the high strength steel wire H06MnNi3CrMoA were fed into the molten pool together at the deposition current of 400 A. The composition gradient regulating research of deposited metal was conducted. The results showed that the deposition rate is 2.4 kg/h. The designed composition of the deposited metal can be accurately achieved by adjusting the ratio of wire feed speeds. The tensile strength, yield strength, and micro hardness of the deposited metal increased linearly with the increase of the high-strength steel mass fraction. The ranges of them are 565-914 , 441-803 MPa and 206-327 HV respectively. Finally, a sliding bearing with mild steel/high-strength steel composited structure was designed and the additive manufacturing of it was realized using the proposed method. The component gradient transition zone was deposited between the bearing matrix and the bearing bush to reduce the hardness gradient in the forming part. The bimetallic interface mismatch problem was alleviated.
  • 马玉芳, 沙景华, 闫晶晶, 等. 中国镍资源供应安全评价与对策研究[J]. 资源科学, 2019, 41(7): 1317 − 1328.

    Ma Yufang, Sha Jinghua, Yan Jingjing, et al. Safety assessment and countermeasures of nickel resource supply in China[J]. Resources Science, 2019, 41(7): 1317 − 1328.
    赵菲, 段宣政, 刘子敬, 等. 3D打印一体化低合金钢/中碳钢枪钻界面表征[J]. 焊接学报, 2020, 41(5): 85 − 90. doi: 10.12073/j.hjxb.20200324001

    Zhao Fei, Duan Xuanzheng, Liu Zijing, et al. Interface characterization of integrated low alloy steel/medium carbon steel gun drill produced by 3D printing method[J]. Transactions of the China Welding Institution, 2020, 41(5): 85 − 90. doi: 10.12073/j.hjxb.20200324001
    Zhang N, Khan T, Guo H, et al. Functionally graded materials: An overview of stability, buckling, and free vibration analysis[J]. Advances in Materials Science and Engineering, 2019, 2019: 1354150. doi: 10.1155/2019/1354150
    王迪, 邓国威, 杨永强, 等. 金属异质材料增材制造研究进展[J]. 机械工程学报, 2021, 57(1): 186 − 198. doi: 10.3901/JME.2021.01.186

    Wang Di, Deng Guowei, Yang Yongqiang, et al. Research progress on additive manufacturing of metallic heterogeneous materials[J]. Journal of Mechanical Engineering, 2021, 57(1): 186 − 198. doi: 10.3901/JME.2021.01.186
    Reichardt A, Dillon R, Borgonia J, et al. Development and characterization of Ti-6Al-4V to 304L stainless steel gradient components fabricated with laser deposition additive manufacturing[J]. Materials & Design, 2016, 104(15): 404 − 413.
    席明哲, 张永忠, 涂义, 等. 激光快速成形316L不锈钢/镍基合金/Ti6Al4V梯度材料[J]. 金属学报, 2008, 44(7): 826 − 830. doi: 10.3321/j.issn:0412-1961.2008.07.011

    Xi Mingzhe, Zhang Yongzhong, Tu Yi, et al. 316L stainless steel/Ni-based alloy Ti6Al4V gradient materials prepared by laser rapid forming process[J]. Acta Metallurgica Sinica, 2008, 44(7): 826 − 830. doi: 10.3321/j.issn:0412-1961.2008.07.011
    Liu Y, Liu C, Liu W, et al. Microstructure and properties of Ti/Al lightweight graded material by direct laser deposition[J]. Materials Science and Technology, 2017, 34(8): 945 − 951.
    Shen C, Pan Z, Cuiuri D, et al. Fabrication of Fe-FeAl functionally graded material using the wire-arc additive manufacturing process[J]. Metallurgical & Materials Transactions B, 2016, 47(1): 763 − 772.
    Dong B, Pan Z, Shen C, et al. Fabrication of copper-rich Cu-Al alloy using the wire-arc additive manufacturing process[J]. Metallurgical & Materials Transactions B, 2017, 48(1): 3143 − 3151.
    Awais Akhtar, Dong Honggang, Xia Yueqing, et al. Lap joining 5052 aluminum alloy to Ti6Al4V titanium alloy by GTAW process with AlSi12 filler wire[J]. China Welding, 2020, 29(3): 1 − 8.
    邹鹏远, 程东海, 刘小萍, 等. 双丝电弧增材梯度材料的工艺性能[J]. 焊接, 2019(10): 12 − 16.

    Zou Pengyuan, Cheng Donghai, Liu Xiaoping, et al. Processing properties of gradient metal fabricated by double wire arc additive manufacturing[J]. Welding & Joining, 2019(10): 12 − 16.
    熊俊. 基于ART算法的双钨极耦合电弧温度场光谱诊断[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    Xiong Jun. Spectroscopic diagnosis of temperature distribution of twin-electrode TIG coupling arc based on ART algorithm[D]. Harbin: Harbin Institute of Technology, 2010.
    Han Q, Li D, Sun H, et al. Forming characteristics of additive manufacturing process by twin electrode gas tungsten arc[J]. International Journal of Advanced Manufacturing Technology, 2019, 104(1): 4517 − 4526.
    张敏, 周小华, 黄东鎏, 等. 复合材料界面裂纹焊接接头塑性发展方向与复合角依存关系的数值分析[J]. 焊接学报, 2008, 29(6): 9 − 12. doi: 10.3321/j.issn:0253-360X.2008.06.003

    Zhang Min, Zhou Xiaohua, Huang Dongliu, et al. Numerical analysis about dependence relation between plastic zone spread direction for welded joints with interface crack and mixity angle of composite material[J]. Transactions of the China Welding Institution, 2008, 29(6): 9 − 12. doi: 10.3321/j.issn:0253-360X.2008.06.003
  • Related Articles

    [1]FAN Wenxue, CHEN Furong. Prediction and optimization of tensile strength of 7A52 aluminum alloy friction stir welding joints based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 55-60. DOI: 10.12073/j.hjxb.20210322001
    [2]ZHOU Liucheng, ZHOU Lei, LI Yinghong, WANG Cheng. Effect of laser shock processing on tensile strength of welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 52-54,58.
    [3]JIANG Qinglei, LI Yajiang, WANG Juan, XU Zonglin, FU Jinliang. Strength matching on mechanical properties of welded joint of Q550 high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 65-68.
    [4]GANG Tie, ZHAO Xuemei, LIN Sanbao, LUAN Yilin. Non-destructive evaluation of FSW tensile property[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 1-4.
    [5]ZHANG Tianhong, DU Yi, ZHANG Junxu. Effect of carbon and nitrogen on microstructure and properties of austenite weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 81-84,88.
    [6]XUE Song-bai, WU Yu-xiu, CUI Guo-ping, ZHANG Ling. Numerical simulation of effect of thermal cycling on tensile strength and microstructure of QFP soldered joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 1-4.
    [7]YAO Li-hua, XUE Song-bai, WANG Peng, LIU Lin. Effect of diode-laser parameters on tensile strength of QFP micro-joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 90-92.
    [8]HU Yong-fang, XUE Song-bai, YU Sheng-lin. Study on strength of soldered micro-joints of QFP devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 78-80.
    [9]HU Yong-fang, XUE Song-bai, SHI Yi-ping, YU Sheng-lin. Effects of lead-free solder on the tensile strength of QFP micro-joints soldered with different pitchs[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 72-74.
    [10]ZHU Liang, CHEN Jian-hang. Characteristics of stress distribution and prediction of strength inheat-affected zone softened welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 48-51.
  • Cited by

    Periodical cited type(4)

    1. 刘伟,岳祚林,徐超,李素丽. 316L不锈钢焦耳热3D打印过程变形量数值分析. 焊接技术. 2024(04): 1-5 .
    2. 刘焜,闫朝阳,陈树君,陈希章. 电弧增材热源及轨迹规划研究进展. 焊接学报. 2024(11): 21-34 . 本站查看
    3. 刘伟,张鑫,李素丽,李小龙. 基于焦耳热增材制造过程的温度场分析研究. 焊接技术. 2023(10): 1-4 .
    4. 张鑫,刘伟,张伟博,李小龙. 金属3D打印焦耳热最大变形量数值分析. 焊接技术. 2023(11): 1-5 .

    Other cited types(0)

Catalog

    Article views (339) PDF downloads (53) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return