Citation: | GUI Xiaoyan, ZHANG Yanxi, YOU Deyong, GAO Xiangdong. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 34-39. DOI: 10.12073/j.hjxb.20210324005 |
Han T, Gu S W, Xu L, et al. Study on stress and deformation of keyhole gas tungsten arc-welded joints[J]. China Welding, 2020, 29(1): 21 − 29.
|
许欣欣, 梁晓光, 杨瑞生, 等. 焊接残余应力对2219铝合金熔焊接头承载能力的影响[J]. 焊接学报, 2020, 41(10): 17 − 22. doi: 10.12073/j.hjxb.20200403004
Xu Xinxin, Liang Xiaoguang, Yang Ruisheng, et al. Effect of welding residual stress on bearing capacity of fusion welded joint of 2219 aluminum alloy[J]. Transactions of the China Welding Institution, 2020, 41(10): 17 − 22. doi: 10.12073/j.hjxb.20200403004
|
Liu F Y, Tan C W, Gong X T, et al. A comparative study on microstructure and mechanical properties of HG785D steel joint produced by hybrid laser-MAG welding and laser welding[J]. Optics and Laser Technology, 2020, 128: 106247. doi: 10.1016/j.optlastec.2020.106247
|
Mondal A K, Biswas P, Bag S. Prediction of welding sequence induced thermal history and residual stresses and their effect on welding distortion[J]. Welding in the World, 2017, 61(4): 711 − 721. doi: 10.1007/s40194-017-0468-3
|
Shadkam S, Ranjbarnodeh E, Iranmanesh M. Effect of sequence and stiffener shape on welding distortion of stiffened panel[J]. Journal of Constructional Steel Research, 2018, 149: 41 − 52. doi: 10.1016/j.jcsr.2018.07.010
|
Chen Z, Chen Z C, Shenoi R A. Influence of welding sequence on welding deformation and residual stress of a stiffened plate structure-science direct[J]. Ocean Engineering, 2015, 106: 271 − 280. doi: 10.1016/j.oceaneng.2015.07.013
|
Han S, Ahn J, Na S. A study on ray tracing method for CFD simulations of laser keyhole welding: progressive search method[J]. Welding in the World, 2016, 60(2): 247 − 258. doi: 10.1007/s40194-015-0289-1
|
Liang W, Deng D. Influences of heat input, welding sequence and external restraint on twisting distortion in an asymmetrical curved stiffened panel[J]. Advances in Engineering Software, 2018, 115: 439 − 451. doi: 10.1016/j.advengsoft.2017.11.002
|
Yi J, Zhang J M, Cao S F, et al. Effect of welding sequence on residual stress and deformation of 6061-T6 aluminium alloy automobile component[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 287 − 295. doi: 10.1016/S1003-6326(19)64938-1
|
Gao X D, Wang L, You D Y, et al. Synchronized monitoring of droplet transition and keyhole bottom in high power laser-mag hybrid welding process[J]. Sensors Journal, IEEE, 2019, 19(9): 3553 − 3563. doi: 10.1109/JSEN.2019.2893120
|
严春妍, 易思, 张浩, 等. S355钢激光-MIG复合焊接头显微组织和残余应力[J]. 焊接学报, 2020, 41(6): 12 − 18.
Yan Chunyan, Yi Si, Zhang Hao, et al. Investigation of microstructure and stress in laser-MIG hybrid welded S355 steel plates[J]. Transactions of the China Welding Institution, 2020, 41(6): 12 − 18.
|
Zhu Z W, Ma X Q, Wang C M, et al. Modification of droplet morphology and arc oscillation by magnetic field in laser-MIG hybrid welding[J]. Optics and Lasers in Engineering, 2020, 131: 106138. doi: 10.1016/j.optlaseng.2020.106138
|
吴向阳, 徐剑侠, 高学松, 等. 激光-MIG复合焊接热过程与熔池流场的数值分析[J]. 中国激光, 2019, 46(9): 91 − 102.
Wu Xiangyang, Xu Jianxia, Gao Xuesong, et al. Numerical simulation of thermal process and fluid flow field in Laser-MIG hybrid weld pools[J]. Chinese Journal of Lasers, 2019, 46(9): 91 − 102.
|
Zhou S J, Bu H C, Gao Q Y, et al. Effect of power distribution on the temperature evolution in laser-MIG hybrid welding for Q235 steel[J]. Modern Physics Letters B, 2019(4): 1950405.
|
Gao X D, Wang L, Chen Z Q, et al. Process stability analysis and weld formation evaluation during disk laser-mag hybrid welding[J]. Optics and Lasers in Engineering, 2020, 124(1): 105835.1 − 105835.13.
|
高向东, 冯燕柱, 桂晓燕, 等. 激光入射角影响焊接熔池匙孔瞬态行为数值模拟[J]. 机械工程学报, 2020, 56(22): 82 − 89. doi: 10.3901/JME.2020.22.082
Gao Xiangdong, Feng Yanzhu, Gui Xiaoyan, et al. Numerical simulation of effects of laser incident angle on transient behaviors of molten pool and keyhole during laser welding[J]. Journal of Mechanical Engineering, 2020, 56(22): 82 − 89. doi: 10.3901/JME.2020.22.082
|
Hou Z L, Liu L M, Lü X Z, et al. Numerical simulation for pulsed laser–gas tungsten arc hybrid welding of magnesium alloy[J]. Journal of Iron and Steel Research International, 2018, 25: 995 − 1002. doi: 10.1007/s42243-018-0122-3
|
Zhan X H, Liu Y, Ou W M, et al. The numerical and experimental investigation of the multi-layer laser-MIG hybrid welding for Fe36Ni Invar alloy[J]. Journal of Materials Engineering and Performance, 2015, 24(12): 4948 − 4957. doi: 10.1007/s11665-015-1808-3
|
Fu G, Lourenco M I, Duan M L, et al. Influence of the welding sequence on residual stress and distortion of fillet welded structures[J]. Marine Structures, 2016, 46: 30 − 55. doi: 10.1016/j.marstruc.2015.12.001
|
[1] | WAN Rui1,2, LUO Yi1,2, ZHU Liang1,2, XU Jie1,2. Analysis of the resistance characteristics of nugget nucleation in the resistance spot welding with TiO2 powder addition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 71-74. DOI: 10.12073/j.hjxb.2018390071 |
[2] | YAN Fuyu, LI Yang, LUO Zhen, TAN Hui, LUO Tong. Effect of external magnetic field on nugget shift of aluminum alloy resistance spot weld with unequal thickness[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 67-70. |
[3] | JI Chuntao, DENG Lipeng. Data characteristics of resistance spot welding of aluminum and mild steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 102-104. |
[4] | WANG Hao, LUO Zhen, ZHOU Linshu, ZHANG Di. Study on influence of CNT to nugget of aluminum alloy spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 49-52. |
[5] | SHEN Jie, LIN Haolei, ZHANG Yansong, CHEN Guanlong. Control method for nugget size of resistance spot welding of three-layer steels with different thickness and strength[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 33-36. |
[6] | LIU Kai, GANG Tie. Ultrasonic echo features and nugget diameter measuring for welding spot of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (8): 105-108. |
[7] | XUE Zhiqing, LUO Zhen, SHAN Ping, LIU Ying, Wang Rui. Inversion imaging of nugget cross-section in aluminum alloy resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 87-90. |
[8] | ZHANG Xuqiang, ZHANG Yansong, LIU Yancong, CHEN Guanlong. Effect of pitting on nugget formation in spot welding hot-galvanization steels with high strength[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (5): 17-20. |
[9] | TANG Xinxin, SHAN Ping, LUO Zhen, YE Mao. Inverse design of spot welding nugget sizes and current parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 45-48. |
[10] | LI Yong-bing, LIN Zhong-qin, LAI Xin-min, CHEN Guan-long. Analysis of nugget formation process in resistance spot welding based on magnetic fluid dynamics theory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 41-44. |
1. |
韩念梅,冯迪,陈家劲,吴彤,张保玲,唐建国. 焊前状态对7055铝合金焊接接头组织与性能的影响. 材料热处理学报. 2025(03): 226-238 .
![]() | |
2. |
许楠,张柏硕,齐天祥,刘朝阳,徐玉缀,宋亓宁,包晔峰. HSn70-1锡黄铜冷源辅助搅拌摩擦焊搅拌区的强化机制和应变硬化行为. 焊接学报. 2024(01): 17-22+130 .
![]() | |
3. |
陈文雅,宋娓娓,汪洪峰. 聚丙烯塑料搅拌摩擦连接区性能分析. 塑料科技. 2024(12): 93-96 .
![]() | |
4. |
程哲闻,张可,吕晓辉,蒋元宁,石磊. 铝锂合金的搅拌摩擦焊及其改型工艺研究进展. 电焊机. 2023(03): 46-53+71 .
![]() | |
5. |
徐桂芳,张杰,宋瑞智,王嘉. 人工时效对喷射成形2195-T4搅拌摩擦焊接头组织与性能的影响. 材料热处理学报. 2023(05): 217-226 .
![]() | |
6. |
张贤昆,石磊,武传松,李胜利. 铝/钛异种金属超声振动强化搅拌摩擦焊接工艺试验研究. 航天制造技术. 2023(04): 7-11 .
![]() | |
7. |
苏海龙,骆宗安,谢广明,王浩. 真空搅拌摩擦焊机的研制. 焊接. 2022(10): 37-42 .
![]() |