Advanced Search
GUI Xiaoyan, ZHANG Yanxi, YOU Deyong, GAO Xiangdong. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 34-39. DOI: 10.12073/j.hjxb.20210324005
Citation: GUI Xiaoyan, ZHANG Yanxi, YOU Deyong, GAO Xiangdong. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 34-39. DOI: 10.12073/j.hjxb.20210324005

Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint

More Information
  • Received Date: March 23, 2021
  • Available Online: December 22, 2021
  • The three-dimensional finite element model of 304 stainless steel T-joint was established to study the influence of welding sequence on thermal deformation and residual stress of T-joint during laser-arc hybrid welding. A composite heat source model combining Gaussian surface heat source and 3D Gaussian body heat source was used to simulate the laser and arc hybrid heat sources. The reliability of numerical simulation was verified by laser-arc hybrid build up welding test of 304 stainless steel. Numerical simulation results of weld section pool morphology are in good agreement with the actual welding experimental results, which indicates that the established heat source model can effectively simulate the coupling effect of laser-arc hybrid heat sources. The temperature field, residual stress and thermal deformation of 304 stainless steel T-joint under different welding sequence were analyzed. Experimental results show that the welding sequence has influence on the residual stress and thermal deformation of T-joint in laser-arc hybrid welding. In comparison of the residual stress and thermal deformation under different welding sequences, it is found that the sequential welding can effectively reduce the welding residual stress, and the thermal deformation of simultaneous reverse welding is minimum. Comprehensive analysis shows that the effect of sequence reverse welding for 304 stainless steel T-joint is the best.
  • Han T, Gu S W, Xu L, et al. Study on stress and deformation of keyhole gas tungsten arc-welded joints[J]. China Welding, 2020, 29(1): 21 − 29.
    许欣欣, 梁晓光, 杨瑞生, 等. 焊接残余应力对2219铝合金熔焊接头承载能力的影响[J]. 焊接学报, 2020, 41(10): 17 − 22. doi: 10.12073/j.hjxb.20200403004

    Xu Xinxin, Liang Xiaoguang, Yang Ruisheng, et al. Effect of welding residual stress on bearing capacity of fusion welded joint of 2219 aluminum alloy[J]. Transactions of the China Welding Institution, 2020, 41(10): 17 − 22. doi: 10.12073/j.hjxb.20200403004
    Liu F Y, Tan C W, Gong X T, et al. A comparative study on microstructure and mechanical properties of HG785D steel joint produced by hybrid laser-MAG welding and laser welding[J]. Optics and Laser Technology, 2020, 128: 106247. doi: 10.1016/j.optlastec.2020.106247
    Mondal A K, Biswas P, Bag S. Prediction of welding sequence induced thermal history and residual stresses and their effect on welding distortion[J]. Welding in the World, 2017, 61(4): 711 − 721. doi: 10.1007/s40194-017-0468-3
    Shadkam S, Ranjbarnodeh E, Iranmanesh M. Effect of sequence and stiffener shape on welding distortion of stiffened panel[J]. Journal of Constructional Steel Research, 2018, 149: 41 − 52. doi: 10.1016/j.jcsr.2018.07.010
    Chen Z, Chen Z C, Shenoi R A. Influence of welding sequence on welding deformation and residual stress of a stiffened plate structure-science direct[J]. Ocean Engineering, 2015, 106: 271 − 280. doi: 10.1016/j.oceaneng.2015.07.013
    Han S, Ahn J, Na S. A study on ray tracing method for CFD simulations of laser keyhole welding: progressive search method[J]. Welding in the World, 2016, 60(2): 247 − 258. doi: 10.1007/s40194-015-0289-1
    Liang W, Deng D. Influences of heat input, welding sequence and external restraint on twisting distortion in an asymmetrical curved stiffened panel[J]. Advances in Engineering Software, 2018, 115: 439 − 451. doi: 10.1016/j.advengsoft.2017.11.002
    Yi J, Zhang J M, Cao S F, et al. Effect of welding sequence on residual stress and deformation of 6061-T6 aluminium alloy automobile component[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 287 − 295. doi: 10.1016/S1003-6326(19)64938-1
    Gao X D, Wang L, You D Y, et al. Synchronized monitoring of droplet transition and keyhole bottom in high power laser-mag hybrid welding process[J]. Sensors Journal, IEEE, 2019, 19(9): 3553 − 3563. doi: 10.1109/JSEN.2019.2893120
    严春妍, 易思, 张浩, 等. S355钢激光-MIG复合焊接头显微组织和残余应力[J]. 焊接学报, 2020, 41(6): 12 − 18.

    Yan Chunyan, Yi Si, Zhang Hao, et al. Investigation of microstructure and stress in laser-MIG hybrid welded S355 steel plates[J]. Transactions of the China Welding Institution, 2020, 41(6): 12 − 18.
    Zhu Z W, Ma X Q, Wang C M, et al. Modification of droplet morphology and arc oscillation by magnetic field in laser-MIG hybrid welding[J]. Optics and Lasers in Engineering, 2020, 131: 106138. doi: 10.1016/j.optlaseng.2020.106138
    吴向阳, 徐剑侠, 高学松, 等. 激光-MIG复合焊接热过程与熔池流场的数值分析[J]. 中国激光, 2019, 46(9): 91 − 102.

    Wu Xiangyang, Xu Jianxia, Gao Xuesong, et al. Numerical simulation of thermal process and fluid flow field in Laser-MIG hybrid weld pools[J]. Chinese Journal of Lasers, 2019, 46(9): 91 − 102.
    Zhou S J, Bu H C, Gao Q Y, et al. Effect of power distribution on the temperature evolution in laser-MIG hybrid welding for Q235 steel[J]. Modern Physics Letters B, 2019(4): 1950405.
    Gao X D, Wang L, Chen Z Q, et al. Process stability analysis and weld formation evaluation during disk laser-mag hybrid welding[J]. Optics and Lasers in Engineering, 2020, 124(1): 105835.1 − 105835.13.
    高向东, 冯燕柱, 桂晓燕, 等. 激光入射角影响焊接熔池匙孔瞬态行为数值模拟[J]. 机械工程学报, 2020, 56(22): 82 − 89. doi: 10.3901/JME.2020.22.082

    Gao Xiangdong, Feng Yanzhu, Gui Xiaoyan, et al. Numerical simulation of effects of laser incident angle on transient behaviors of molten pool and keyhole during laser welding[J]. Journal of Mechanical Engineering, 2020, 56(22): 82 − 89. doi: 10.3901/JME.2020.22.082
    Hou Z L, Liu L M, Lü X Z, et al. Numerical simulation for pulsed laser–gas tungsten arc hybrid welding of magnesium alloy[J]. Journal of Iron and Steel Research International, 2018, 25: 995 − 1002. doi: 10.1007/s42243-018-0122-3
    Zhan X H, Liu Y, Ou W M, et al. The numerical and experimental investigation of the multi-layer laser-MIG hybrid welding for Fe36Ni Invar alloy[J]. Journal of Materials Engineering and Performance, 2015, 24(12): 4948 − 4957. doi: 10.1007/s11665-015-1808-3
    Fu G, Lourenco M I, Duan M L, et al. Influence of the welding sequence on residual stress and distortion of fillet welded structures[J]. Marine Structures, 2016, 46: 30 − 55. doi: 10.1016/j.marstruc.2015.12.001
  • Related Articles

    [1]WAN Rui1,2, LUO Yi1,2, ZHU Liang1,2, XU Jie1,2. Analysis of the resistance characteristics of nugget nucleation in the resistance spot welding with TiO2 powder addition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 71-74. DOI: 10.12073/j.hjxb.2018390071
    [2]YAN Fuyu, LI Yang, LUO Zhen, TAN Hui, LUO Tong. Effect of external magnetic field on nugget shift of aluminum alloy resistance spot weld with unequal thickness[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 67-70.
    [3]JI Chuntao, DENG Lipeng. Data characteristics of resistance spot welding of aluminum and mild steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 102-104.
    [4]WANG Hao, LUO Zhen, ZHOU Linshu, ZHANG Di. Study on influence of CNT to nugget of aluminum alloy spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 49-52.
    [5]SHEN Jie, LIN Haolei, ZHANG Yansong, CHEN Guanlong. Control method for nugget size of resistance spot welding of three-layer steels with different thickness and strength[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 33-36.
    [6]LIU Kai, GANG Tie. Ultrasonic echo features and nugget diameter measuring for welding spot of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (8): 105-108.
    [7]XUE Zhiqing, LUO Zhen, SHAN Ping, LIU Ying, Wang Rui. Inversion imaging of nugget cross-section in aluminum alloy resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 87-90.
    [8]ZHANG Xuqiang, ZHANG Yansong, LIU Yancong, CHEN Guanlong. Effect of pitting on nugget formation in spot welding hot-galvanization steels with high strength[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (5): 17-20.
    [9]TANG Xinxin, SHAN Ping, LUO Zhen, YE Mao. Inverse design of spot welding nugget sizes and current parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 45-48.
    [10]LI Yong-bing, LIN Zhong-qin, LAI Xin-min, CHEN Guan-long. Analysis of nugget formation process in resistance spot welding based on magnetic fluid dynamics theory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 41-44.
  • Cited by

    Periodical cited type(7)

    1. 韩念梅,冯迪,陈家劲,吴彤,张保玲,唐建国. 焊前状态对7055铝合金焊接接头组织与性能的影响. 材料热处理学报. 2025(03): 226-238 .
    2. 许楠,张柏硕,齐天祥,刘朝阳,徐玉缀,宋亓宁,包晔峰. HSn70-1锡黄铜冷源辅助搅拌摩擦焊搅拌区的强化机制和应变硬化行为. 焊接学报. 2024(01): 17-22+130 . 本站查看
    3. 陈文雅,宋娓娓,汪洪峰. 聚丙烯塑料搅拌摩擦连接区性能分析. 塑料科技. 2024(12): 93-96 .
    4. 程哲闻,张可,吕晓辉,蒋元宁,石磊. 铝锂合金的搅拌摩擦焊及其改型工艺研究进展. 电焊机. 2023(03): 46-53+71 .
    5. 徐桂芳,张杰,宋瑞智,王嘉. 人工时效对喷射成形2195-T4搅拌摩擦焊接头组织与性能的影响. 材料热处理学报. 2023(05): 217-226 .
    6. 张贤昆,石磊,武传松,李胜利. 铝/钛异种金属超声振动强化搅拌摩擦焊接工艺试验研究. 航天制造技术. 2023(04): 7-11 .
    7. 苏海龙,骆宗安,谢广明,王浩. 真空搅拌摩擦焊机的研制. 焊接. 2022(10): 37-42 .

    Other cited types(7)

Catalog

    Article views (320) PDF downloads (49) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return