Citation: | BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003 |
袁丁, 高华兵, 孙小婧, 等. 改善金属增材制造材料组织与力学性能的方法与技术[J]. 航空制造技术, 2018, 61(10): 40 − 48.
Yuan Ding, Gao Huabing, Sun Xiaojing, et al. Methods and techniques for improving microstructure and performance of metal additively manufactured materials[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 40 − 48.
|
李宏棋. 激光增材制造技术及其应用[J]. 科教导刊(中旬刊), 2019(12): 47 − 48.
Li Hongqi. Manufacturing technology of laser adding materials and its application[J]. The Guide of Science & Education, 2019(12): 47 − 48.
|
Yu Qun, Wang Cunshan, Wang Di, et al. Microstructure and properties of Ti-Zr congruent alloy fabricated by laser additive manufacturing[J]. Journal of Alloys and Compounds, 2020(834): 1 − 10.
|
Song Bo, Dong Shujuan, Deng Sihao, et al. Microstructure and tensile properties of iron parts fabricated by selective laser melting[J]. Optics & Laser Technology, 2014, 56: 451 − 460.
|
Zhang Yimin, Huang Weibo. Comparisons of 304 austenitic stainless steel manufactured by laser metal deposition and selective laser melting[J]. Journal of Manufacturing Processes, 2020, 57: 324 − 333. doi: 10.1016/j.jmapro.2020.06.042
|
Ma Mingming, Wang Zemin, Zeng Xiaoyan. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition[J]. Materials Science and Engineering: A, 2017, 685: 265 − 273. doi: 10.1016/j.msea.2016.12.112
|
Guo Wei, Wang Hao, Peng Peng, et al. Effect of laser shock processing on oxidation resistance of laser additive manufactured Ti6Al4V titanium alloy[J]. Corrosion Science, 2020, 170: 1 − 10. doi: 10.1016/j.corsci.2020.108655
|
Wang Xiang, Zhang Linjie, Ning Jie, et al. Effect of addition of micron-sized lanthanum oxide particles on morphologies, microstructures and properties of the wire laser additively manufactured Ti–6Al–4V alloy[J]. Materials Science and Engineering: A, 2021, 803: 1 − 6. doi: 10.1016/j.msea.2020.140475
|
Han Liying, Wang Cunshan. Microstructure and properties of Ti64.51Fe26.40Zr5.86Sn2.93Y0.30 biomedical alloy fabricated by laser additive manufacturing[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3274 − 3286. doi: 10.1016/S1003-6326(20)65460-7
|
Klas Solberg, Filippo Berto. The effect of defects and notches in quasi-static and fatigue loading of Inconel 718 specimens produced by selective laser melting[J]. International Journal of Fatigue, 2020, 137: 1 − 10. doi: 10.1016/j.ijfatigue.2020.105637
|
Liu Fengguang, Lin Xin, Song Menghua, et al. Microstructure and mechanical properties of laser solid formed 300M steel[J]. Journal of Alloys and Compounds, 2015, 621: 35 − 41. doi: 10.1016/j.jallcom.2014.09.111
|
Mertens R, Vrancken B, Holmstock N, et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts[J]. Physics Procedia, 2016, 83: 882 − 890. doi: 10.1016/j.phpro.2016.08.092
|
Ebrahimnia Mohamad, Xie Yujiang, Chi Changtai. Effect of laser power and deposition environment on the microstructure and properties of direct laser metal-deposited 12CrNi2 steel[J]. Acta Metallurgica Sinica(English Letters), 2020, 3(4): 60 − 70.
|
Cao Lin, Chen Suiyuan, Wei Mingwei, et al. Effect of laser energy density on defects behavior of direct laser depositing 24CrNiMo alloy steel[J]. Optics & Laser Technology, 2019, 111: 541 − 553.
|
Wang Qing, Zhang Zhihui, Tong Xin, et al. Effects of process parameters on the microstructure and mechanical properties of 24CrNiMo steel fabricated by selective laser melting[J]. Optics & Laser Technology, 2020, 128: 1 − 10.
|
杨晨, 董志宏, 迟长泰, 等. 选区激光熔化成形24CrNiMo合金钢的组织结构与力学性能[J]. 中国激光, 2020, 47(5): 389 − 399.
Yang Chen, Dong Zhihong, Chi Changtai, et al. Microstructure and Mechanical Properties of 24CrNiMo Alloy Steel Formed by Selective Laser Melting[J]. Chinese Journal of Lasers, 2020, 47(5): 389 − 399.
|
Tang Xu, Zhang Song, Zhang Chunhua, et al. Optimization of laser energy density and scanning strategy on the forming quality of 24CrNiMo low alloy steel manufactured by SLM[J]. Materials Characterization, 2020, 170: 1 − 10. doi: 10.1016/j.matchar.2020.110718
|
Dong Zhihong, Zhang Wei, Kang Hongwei, et al. Surface hardening of laser melting deposited 12CrNi2 alloy steel by enhanced plasma carburizing via hollow cathode discharge[J]. Surface & Coatings Technology, 2020, 397: 1 − 10.
|
张炜, 董志宏, 亢红伟, 等. 回火对激光增材制造12CrNi2合金钢显微组织和力学性能的影响[J]. 材料热处理学报, 2020, 41(2): 59 − 66.
Zhang Wei, Dong Zhihong, Kang Hongwei, et al. Effect of tempering on microstructure and mechanical properties of the 12CrNi2 alloy steel prepared by laser additive manufacturing[J]. Transactions of Materials and Heat Treatment, 2020, 41(2): 59 − 66.
|
Zhang Wei, Dong Zhihong, Kang Hongwei, et al. Effect of tempering on microstructure and mechanical properties of the 12CrNi2 alloy steel prepared by laser additive manufacturing[J]. Transactions of Materials and Heat Treatment, 2020, 41(2): 59 − 66.
|
Zhang Wei, Dong Zhihong, Kang Hongwei, et al. Enhancement of strength–ductility balance of the laser melting deposited 12CrNi2 alloy steel via multi-step quenching treatment[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1234 − 1244.
|
Zhou Yue, Chen Suiyuan, Chen Xueting, et al. The evolution of bainite and mechanical properties of direct laser deposition 12CrNi2 alloy steel at different laser power[J]. Materials Science and Engineering, 2019, 742(10): 150 − 161.
|
Guan Tingting, Chen Suiyuan, Chen Xueting, et al. Effect of laser incident energy on microstructures and mechanical properties of 12CrNi2Y alloy steel by direct laser deposition[J]. Journal of Materials Science & Technology, 2019, 35(2): 395 − 402.
|
Xu Y H, Zhang C H, Zhang S, et al. Scanning velocity influence on microstructure evolution and mechanical properties of laser melting deposited 12CrNi2 low alloy steel[J]. Vacuum, 2020, 177: 1 − 10. doi: 10.1016/j.vacuum.2020.109387
|
Cui X, Zhang S, Wang C, et al. Effects of stress-relief heat treatment on the microstructure and fatigue property of a laser additive manufactured 12CrNi2 low alloy steel[J]. Materials Science and Engineering A, 2020, 791: 1 − 10. doi: 10.1016/j.msea.2020.139738
|
Zhang W, Dong Z, Kang H, et al. Effect of various quenching treatments on microstructure and mechanical behavior of a laser additively manufactured 12CrNi2 alloy steel[J]. Journal of Materials Processing Technology, 2021, 288: 1 − 10. doi: 10.1016/j.jmatprotec.2020.116907
|
谷秀锐, 赵英利, 白丽娟, 等. 彩色金相在显微组织分析中的应用[J]. 理化检验(物理分册), 2018, 54(5): 322 − 325,328.
Gu Xiurui, Zhao Yingli, Bai Lijuan, et al. Application of color m etallography in microstructure analysis[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2018, 54(5): 322 − 325,328.
|
Girault E, Jacques P, Harlet P, et al. Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels[J]. Materials Characterization, 1998, 40(2): 111 − 118. doi: 10.1016/S1044-5803(97)00154-X
|
Luo Xiang, Chen Xiaohua, Wang Tao, et al. Effect of morphologies of martensite-austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel[J]. Materials Science and Engineering, 2018, 710(5): 192 − 199.
|
Cherry J A, Mehmood H M, Lavery N P, et al. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(5-8): 869 − 879. doi: 10.1007/s00170-014-6297-2
|
Suman Das. Physical aspects of process control in selective laser sintering of metals[J]. Advanced Engineering Materials, 2003, 5(10): 701 − 711. doi: 10.1002/adem.200310099
|
张丹, 王猛, 李闯闯. TA15钛合金选区激光熔化成形工艺研究[J]. 铸造技术, 2020, 41(5): 407 − 412.
Zhang Dan, Wang Meng, Li Chuangchuang. Effect of processing parameters on selective laser melting of TA15 titanium alloy[J]. Foundry Technology, 2020, 41(5): 407 − 412.
|
魏恺文, 王泽敏, 曾晓雁. AZ91D镁合金在激光选区熔化成形中的元素烧损[J]. 金属学报, 2016, 52(2): 184 − 190. doi: 10.11900/0412.1961.2015.00212
Wei Kaiwen, Wang Zemin, Zeng Xiaoyan. Element loss of AZ91D magnesium alloy during selective laser melting process[J]. Acta Metallurgica, 2016, 52(2): 184 − 190. doi: 10.11900/0412.1961.2015.00212
|
Zhao Xuan, Lü Yaohui, Dong Shiyun, et al. The martensitic strengthening of 12CrNi2 low-alloy steel using a novel scanning strategy during direct laser deposition[J]. Optics & Laser Technology, 2020, 132: 1 − 10.
|
[1] | WANG Meng, ZHANG Liping, ZHAO Linyu, WU Jun, XIONG Ran, MENG Yongsheng, LI Junhong. Comparative study on the microstructure and mechanical properties of the laser welded joints of additive manufactured and forged TC11 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 102-110. DOI: 10.12073/j.hjxb.20221114001 |
[2] | AO Ni, HE Ziang, WU Shengchuan, PENG Xin, WU Zhengkai, ZHANG Zhenxian, ZHU Hongbin. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 1-19. DOI: 10.12073/j.hjxb.20220413002 |
[3] | ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001 |
[4] | XIE Yujiang, YANG Yule, CHI Changtai. Microstructures and mechanical properties of laser metal deposited 24CrNiMo steel in different atmospheres[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 19-24. DOI: 10.12073/j.hjxb.20190905001 |
[5] | YIN Yan<sup>1</sup>, LIU Pengyu<sup>1</sup>, LU Chao<sup>2</sup>, XIAO Mengzhi<sup>1,3</sup>, ZHANG Ruihua<sup>2,3</sup>. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 77-81. DOI: 10.12073/j.hjxb.2018390205 |
[6] | ZHANG Jianchao1, QIAO Junnan1, WU Shikai1, LIAO Hongbin2, WANG Xiaoyu2. Microstructure and mechanical properties of fiber laser welded joints of reduced activation ferritic/martensitic CLF-1 steel heavy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 124-128. DOI: 10.12073/j.hjxb.2018390109 |
[7] | DU Borui, TIAN Xiangjun, WANG Huaming. Microstructure and mechanical properties of MIG welded joint of laser melting deposited TA15 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 65-68. |
[8] | ZHANG Man, XUE Songbai, DAI Wei, LOU Yinbin, WANG Shuiqing. Mechanical properties and microstructure of 3003 Al-alloy brazed joint with Zn-Al filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (3): 61-64. |
[9] | CHENG Donghai, HUANG Jihua, LIN Haifan, ZHANG Hua. Microstructure and mechanical analysis of Ti-6Al-4V laser butt weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 103-106. |
[10] | SONG Jianling, LIN Sanbao, YANG Chunli, FAN Chenglei. Microstructure and mechanical properties of TIG brazing of stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 105-108. |
1. |
胡伟钦,谢悠,徐芯茹,谭瑞轩,杨腾飞. SPS工艺下Ti中间层连接SiC陶瓷的接头组织与强度研究. 电焊机. 2025(04): 40-48 .
![]() | |
2. |
杨晶,薛鹏,张永锋,房旭,江晨雨,石凯. 碳化硼陶瓷与高氮钢钎焊接头组织和性能. 焊接学报. 2024(05): 113-118 .
![]() | |
3. |
程伟,王哲,程经纬,江慧丰,陶元宏,陈炜. 碳纤维复合材料气瓶声发射监测试验研究. 压力容器. 2022(03): 71-80 .
![]() | |
4. |
鲁明远,韩保红,赫万恒,赵忠民. TiB_2基陶瓷/42CrMo合金层状梯度材料力学测试与结构设计. 焊接学报. 2021(09): 42-48+73+99 .
![]() |