Citation: | LI Congwei, SHAO Changlei, ZHU Jialei, CAI Zhihai, MEI Le, JIAO Xiangdong. Microstructure and properties of 304 stainless steel coating by local dry underwater laser cladding with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 67-74. DOI: 10.12073/j.hjxb.20210305004 |
焦向东, 朱加雷. 海洋工程水下焊接自动化技术应用现状及展望[J]. 金属加工(热加工), 2013(2): 24 − 26.
Jiao Xiangdong, Zhu Jialei. Application status and prospect of underwater welding automation technology in offshore engineering[J]. MW Metal Forming, 2013(2): 24 − 26.
|
Takehisa H, Masataka T, Yoshimi T, et al. Development of underwater laser cladding and underwater laser seal welding techniques for reactor componentsl[J]. Journal of Power and Energy Systems, 2009, 3(1): 51 − 59. doi: 10.1299/jpes.3.51
|
冯健, 侯国亭, 刘献甫, 等. 核电设备用SA533GrBCL2-304L金属复合板爆炸焊接工艺试验研究[J]. 压力容器, 2019, 36(11): 18.
Feng Jian, Hou Guoting, Liu Xianfu, et al. Experimental research on explosive welding process of SA533GrBCL2-304L clad metal plate for nuclear power equipment[J]. Pressure Vessel Technology, 2019, 36(11): 18.
|
曾群锋, 许雅婷, 林乃明. 304不锈钢在人工海水环境中的腐蚀磨损行为研究[J]. 表面技术, 2020, 49(1): 194 − 202.
Zeng Qunfeng, Xu Yating, Lin Naiming. Corrosion and wear behavior of 304 stainless steel in artificial seawater[J]. Surface Technology, 2020, 49(1): 194 − 202.
|
Fu Yunlong, Guo Ning, Cheng Qi, et al. In-situ formation of laser-cladded layer on Ti-6Al-4V titanium alloy in underwater environment[J]. Optics and Laser Technology, 2020, 131: 1 − 10. doi: 10.1016/j.optlaseng.2020.106104
|
Feng Xiangru, Cui Xiufang, Zheng Wei, et al. Effect of the protective materials and water on the repairing quality of nickel aluminum bronze during underwater wet laser repairing[J]. Optics and Laser Technology, 2019, 114: 140 − 145. doi: 10.1016/j.optlastec.2019.01.034
|
Wen Xin, Jin Guo, Cui Xiufang, et al. Underwater wet laser cladding on 316L stainless steel: A protective material assisted method[J]. Optics and Laser Technology, 2020, 111: 814 − 824.
|
Fu Yunlong, Guo Ning, Cheng Qi, et al. Investigation on in-situ laser cladding coating of the 304 stainless steel in water environment[J]. Journal of Materials Processing Technology, 2021, 289: 1 − 10. doi: 10.1016/j.jmatprotec.2020.116949
|
Fu Yunlong, Guo Ning, Cheng Qi, et al. Underwater laser welding for 304 stainless steel with filler wire[J]. Journal of Materials Research and Technology, 2020, 9(6): 15648 − 15661. doi: 10.1016/j.jmrt.2020.11.029
|
Fu Yunlong, Guo Ning, Wang Guanghui, et al. Underwater additive manufacturing of Ti-6Al-4V alloy by laser metal deposition: Formability, gran growth and microstructure evolution[J]. Materials and Design, 2021, 197: 1 − 10. doi: 10.1016/j.matdes.2020.109196
|
Van T L, Dinh S M. Microstructural and mechanical characteristics of 308L stainless steel manufactured by gas metal arc welding-based additive manufacturing[J]. Materials Letters, 2020, 271: 1 − 10. doi: 10.1016/j.matlet.2020.127791
|
Li Kaibin, Li Dong, Liu Dongyu, et al. Microstructure evolution and mechanical properties of multiple-layer laser cladding coating of 308L stainless steel[J]. Applied Surface Science, 2015, 340: 143 − 150. doi: 10.1016/j.apsusc.2015.02.171
|
Song Lijun, Zeng Guangcheng, Xiao Hui, et al. Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders[J]. Journal of Manufacturing Processes, 2016, 24: 116 − 124. doi: 10.1016/j.jmapro.2016.08.004
|
Song Jianli, Deng Qilin, Chen Changyuan, et al. Rebuilding of metal components with laser cladding forming[J]. Applied Surface Science, 2006, 252(22): 7934 − 7940. doi: 10.1016/j.apsusc.2005.10.025
|
Wen Jiahao, Zhang Linjie, Ning Jie, et al. Laser additively manufactured intensive dual-phase steels and their microstructures, properties and corrosion resistance[J]. Materials and Design, 2020, 192: 1 − 10. doi: 10.1016/j.matdes.2020.108710
|
[1] | LIANG Hui, LI Pan, SHEN Xin, CHEN Lifan, DAI Junhui, LI Dong, YANG Dongqing. Finite element analysis of the effect of ultrasonic impact on the stress of aluminum alloy arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 79-85, 119. DOI: 10.12073/j.hjxb.20230304003 |
[2] | WANG Hongfeng, WANG Jianli, ZUO Dunwen, SONG Weiwei, DUAN Xinglin. Finite element analysis on friction stir welding of aviation aluminum alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 21-25. |
[3] | ZHU Hai, GUO Yanling, ZHANG Shanshan. Finite element analysis of thermal-mechanical coupled model for friction welded joint of 35Cr2Ni4MoA high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 81-84. |
[4] | HONG Bo, LI Lin, HONG Yuxiang, YANG Jiawang. Finite element analysis of magnetic control arc welding seam tracking sensors[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 5-8. |
[5] | HU Qingxian, WANG Yanhui, YAO Qingjun, WANG Shunyao. Finite element analysis of temperature field during keyholeplasma arc welding using SYSWELD software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 66-69. |
[6] | YE Huan, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on reliability of lead-free soldered joints for CSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 93-96. |
[7] | YANG Iinjuan, SHEN Shiming. Finite element analysis of residual stress of welding repair for gas pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 77-80. |
[8] | ZHANG Mingxian, WU Chuansong, LI Kehai, ZHANG Yuming. FEA based prediction of weld dimension in new DE-GMAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 33-37. |
[9] | WANG Huai-gang, WU Chuan-song, ZHANG Ming-xian. Finite element method analysis of temperature field in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (7): 49-53. |
[10] | WU Yan-qing, PEI Yi, YANG Yong-xing, ZHANG Jian-xun. Finite Element Analysis of Transformation Super-plastic Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 65-68. |
1. |
严蓬辉,陈绪兵,彭伊丽,谢发东. 基于改进YOLOv5s的激光软钎焊焊点缺陷检测算法. 激光与光电子学进展. 2024(08): 219-228 .
![]() | |
2. |
张丽娜. 基于三角激光的机械臂构件缺陷检测方法研究. 激光杂志. 2024(04): 233-237 .
![]() | |
3. |
迟大钊,王梓明,刘海春,李庆生,郭强,苏维刚,贾涛. 基于超声TOFD法B扫描图像预测的缺陷定位. 焊接学报. 2024(12): 1-6 .
![]() | |
4. |
刘茂. 激光超声检测技术在管道壁厚及焊接缺陷检测中的应用研究. 现代制造技术与装备. 2022(04): 136-138 .
![]() | |
5. |
石颖颖,赵金玲,杨乐辉,赵建平. 含分层复合材料管道中超声导波的模态转换特性研究. 压力容器. 2022(03): 81-88 .
![]() | |
6. |
李建宾,石拓,傅戈雁,王明雨,王宇,李天奕,刘广. 基于激光内送粉的十字交叉结构熔覆成形工艺研究. 光学学报. 2022(16): 168-174 .
![]() |