Advanced Search
LIU Qiang, ZHAO Libin, CHI Dazhao. Ultrasonic Lamb wave detection of defects in thin-walled cross laser welding structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 40-43. DOI: 10.12073/j.hjxb.20210123001
Citation: LIU Qiang, ZHAO Libin, CHI Dazhao. Ultrasonic Lamb wave detection of defects in thin-walled cross laser welding structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 40-43. DOI: 10.12073/j.hjxb.20210123001

Ultrasonic Lamb wave detection of defects in thin-walled cross laser welding structure

More Information
  • Received Date: January 22, 2021
  • Available Online: November 15, 2021
  • The ultrasonic Lamb wave method is used to detect and study the effective identification of incomplete penetration in thin-walled cross laser welding structures. The finite element analysis method is used to simulate the effects of A0 and S0 mode Lamb waves in thin walls and the defect. The relationship between defect size and echo reflection coefficient is predicted. On this basis, through simulation combined with experimental research, the incident point and excitation angle of different modes of Lamb waves are determined. At the same time, the feasibility of using A0 and S0 modal waves to identify incomplete penetration of 1.9 mm thick thin plate cross laser welding structure is discussed. And the relationship between Lamb wave reflection coefficient and defect size is obtained. The results show: The trends of simulation research and experimental results have good consistency. With ultrasonic Lamb wave detection, A0 modal waves can effectively detect incomplete penetration in the cross welded structure and can characterize the size of defects to a certain extent; While S0 modal waves are not easy to identify incomplete penetration in the structure.
  • Rose J L. A baseline and vision of ultrasonic guided wave inspection potential[J]. Journal of Pressure Vessel Technology- transactions of the Asme, 2002, 124(3): 273 − 282. doi: 10.1115/1.1491272
    Lamb H. On waves in an elastic plate[J]. Proceedings of the Royal Society A, 1917, 93(648): 114 − 128.
    Lee B C, Staszewski W J. Lamb wave propagation modelling for damage detection: I. Two-dimensional analysis[J]. Smart Materials and Structures, 2007, 16: 249 − 259. doi: 10.1088/0964-1726/16/2/003
    Senyurek V Y. Detection of cuts and impact damage at the aircraft wing slat by using Lamb wave method[J]. Measurement, 2015, 10-23: 174 − 180.
    刚铁, 刘强. 薄板结构中Lamb波的检测与仿真[J]. 无损检测, 2013, 35(7): 24 − 28.

    Gan Tie, Liu Qiang. Detection and simulation of the Lamb wave in thin plate structure[J]. Nondestructive Testing, 2013, 35(7): 24 − 28.
    Hamade R F, Fakih M A, Harb M S, et al. Quality assessment of friction stir welded joints–using the fundamental anti-symmetric Lamb wave mode[J]. Materials Science Forum, 2018, 941: 2429 − 2434. doi: 10.4028/www.scientific.net/MSF.941.2429
    Fakih M A, Mustapha S, Tarraf J, et al. Detection and assessment of flaws in friction stir welded joints using ultrasonic guided waves: experimental and finite element analysis[J]. Mechanical Systems and Signal Processing, 2018, 101(101): 516 − 534.
    迟大钊, 马石林, 于连洋, 等. 面状缺陷超声检测图像的正演合成[J]. 焊接学报, 2016, 37(9): 9 − 12.

    Chi Dazhao Ma Shilin Yu Lianyang, et al. Forward synthesis ultrasonic images for testing a planar defect[J]. Transactions of the China Welding Institution, 2016, 37(9): 9 − 12.
    常俊杰, 李媛媛, 胡宸, 等. 基于空气耦合超声的激光焊缝质量评估[J]. 焊接学报, 2019, 40(10): 60 − 66.

    Chang Junjie, Li Yuanyuan, Hu Chen, et al. Quality evaluation of laser welds based on air-coupled ultrasound[J]. Transactions of the China Welding Institution, 2019, 40(10): 60 − 66.
    吴刚, 关山月, 汪小凯, 等. 薄板点焊超声检测信号特征分析与缺陷识别[J]. 焊接学报, 2019, 40(4): 112 − 118.

    Wu Gang, Guan Shanyue, Wang Xiaokai, et al. Feature analysis and defect recognition of ultrasonic detection signal for spot welding of sheet[J]. Transactions of the China Welding Institution, 2019, 40(4): 112 − 118.
    刘磊, 迟大钊, 赵雪梅, 等. 复杂薄壁结构钎焊接头的超声Lamb检测[J]. 焊接, 2010(12): 49 − 52. doi: 10.3969/j.issn.1001-1382.2010.12.011

    Liu Lei, Chi Dazhao, Zhao Xuemei, et al. Lamb wave testing of thiin-walledbrazed weldments withcomplex structure[J]. Welding & Joining, 2010(12): 49 − 52. doi: 10.3969/j.issn.1001-1382.2010.12.011
    Joseph L Rose. 固体中的超声波[M]. 何存富, 吴斌, 王秀彦, 译. 北京: 科学出版社. 2004.

    Joseph L Rose. Ultrasonic waves in solid media [M]. He Chunfu, Wu Bin, Wang Xiuyan, translated. Beijing: Science Press, 2004.
  • Related Articles

    [1]WU Gang, GUAN Shanyue, WANG Xiaokai, WANG Bin. Feature analysis and defect recognition of ultrasonic detection signal for spot welding of sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 112-118. DOI: 10.12073/j.hjxb.2019400110
    [2]CHI Dazhao, MA Shilin, YU Lianyang, GANG Tie. Forward synthesis ultrasonic images for testing a planar defect[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 9-12.
    [3]CHI Dazhao, GANG Tie. Defect detection method based on ultrasonic clutter wave suppression[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(10): 17-20.
    [4]YU Liang, CHEN Yuhua, HUANG Chunping, GE Junwei, KE Liming. Ultrasonic phased array inspection technology for defects in friction stir welded seam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 21-24.
    [5]HU Wengang, GANG Tie. Recognition of weld flaw based on feature fusion of ultrasonic signal and image[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 53-56.
    [6]HU Wengang, GANG Tie, WANG Jinhai. Ultrasonic testing technology of weld defect based on video positioning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 49-52.
    [7]CHI Dazhao, GANG Tie, YAO Yingxue, YUAN Yuan. Defect detection for red copper weldment using ultrasonic method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 21-24.
    [8]ZHENG Jinyang, GUO Weican, SHI Jianfeng, DING Shoubao, WANG Hui, DING Liangyu. Ultrasonic inspection to detect cold welding in electro-fusion joint of polyethylene pipes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 1-4.
    [9]DU Xiuli, SHEN Yi, WANG Yan. Weld defect classification in ultrasonic testing basing on timefrequency discriminant features[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 89-92.
    [10]Zhi-yuan, PEI Run, WANG Ling, LIU Zhi-lin. A Research on Automatic Ultrasonic Inspection System for Weld Flaw UU[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 71-74.
  • Cited by

    Periodical cited type(6)

    1. 严蓬辉,陈绪兵,彭伊丽,谢发东. 基于改进YOLOv5s的激光软钎焊焊点缺陷检测算法. 激光与光电子学进展. 2024(08): 219-228 .
    2. 张丽娜. 基于三角激光的机械臂构件缺陷检测方法研究. 激光杂志. 2024(04): 233-237 .
    3. 迟大钊,王梓明,刘海春,李庆生,郭强,苏维刚,贾涛. 基于超声TOFD法B扫描图像预测的缺陷定位. 焊接学报. 2024(12): 1-6 . 本站查看
    4. 刘茂. 激光超声检测技术在管道壁厚及焊接缺陷检测中的应用研究. 现代制造技术与装备. 2022(04): 136-138 .
    5. 石颖颖,赵金玲,杨乐辉,赵建平. 含分层复合材料管道中超声导波的模态转换特性研究. 压力容器. 2022(03): 81-88 .
    6. 李建宾,石拓,傅戈雁,王明雨,王宇,李天奕,刘广. 基于激光内送粉的十字交叉结构熔覆成形工艺研究. 光学学报. 2022(16): 168-174 .

    Other cited types(3)

Catalog

    Article views (286) PDF downloads (14) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return