Advanced Search
DU Yafang, WANG Dongpo, LIU Xiuguo, GONG Baoming, DENG Caiyan. Root crack propagation angle of load-carrying fillet weld T-joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 21-27. DOI: 10.12073/j.hjxb.20210119001
Citation: DU Yafang, WANG Dongpo, LIU Xiuguo, GONG Baoming, DENG Caiyan. Root crack propagation angle of load-carrying fillet weld T-joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 21-27. DOI: 10.12073/j.hjxb.20210119001

Root crack propagation angle of load-carrying fillet weld T-joints

More Information
  • Received Date: January 18, 2021
  • Available Online: December 01, 2021
  • Aimed at the root fatigue failure propagation path problem of T-joints in Q355B low alloy steel, an equivalent stress intensity factor (KEQ) method based on force analysis and calculation was proposed to predict the root crack propagation angle. The maximum error of solving the stress intensity factor is less than 5% verified by finite element simulation. Compared with the maximum circumferential stress method (MCS method) and the effective structural stress method (ETS method) based on finite element analysis, and combined with the bending fatigue test results of three different stress levels, it is found that: The crack propagation angles calculated by equivalent stress intensity factor method, maximum circumferential stress method and effective structural stress method are 25.6°, 25.9° and 32.2°, respectively. Compared with the root crack propagation angle of 24° in the actual fatigue test, the errors are 6.67%, 7.92% and 34.17%, respectively. The results show that KEQ method has the highest accuracy in solving crack propagation angle, which is more suitable for predicting the root crack propagation angle of T-joint fillet weld under bending fatigue loading.
  • 严春妍, 易思, 张浩, 等. S355钢激光-MIG复合焊接头显微组织和残余应力[J]. 焊接学报, 2020, 41(6): 12 − 18. doi: 10.12073/j.hjxb.20191014001

    Yan Chunyan, Yi Si, Zhang Hao, et al. Microstructure and residual stress of S355 steel composite welded by laser and MIG[J]. Transactions of the China Welding Institution, 2020, 41(6): 12 − 18. doi: 10.12073/j.hjxb.20191014001
    Wang Ping, Pei Xianjun, Dong Pingsha, et al. Analysis of weld root fatigue cracking in load-carrying high-strength aluminum alloy cruciform joints[J]. International Journal of Fatigue, 2020, 139: 105735. doi: 10.1016/j.ijfatigue.2020.105735
    王苹, 米莉艳, 于谊飞, 等. 7N01铝合金十字接头抗疲劳设计[J]. 焊接学报, 2019, 40(10): 20 − 24.

    Wang Ping, Mi Liyan, Yu Yifei, et al. Anti-fatigue design of 7N01 aluminum alloy cross joint[J]. Transactions of the China Welding Institution, 2019, 40(10): 20 − 24.
    刘永, 王苹, 马然, 等. 铝合金非承载十字接头疲劳特性[J]. 焊接学报, 2016, 37(8): 83 − 87.

    Liu Yong, Wang Ping, Ma Ran, et al. Fatigue property of aluminum non-load bearing cruciform joint[J]. Transactions of the China Welding Institution, 2016, 37(8): 83 − 87.
    Wang Cungen, Wang Shuhong, Chen Guangqi, et al. Implementation of a J-integral based maximum circumferential tensile stress theory in DDA for simulating crack propagation[J]. Engineering Fracture Mechanics, 2021, 246: 107621. doi: 10.1016/j.engfracmech.2021.107621
    Xing Shizhu, Dong Pingsha, Alina Threstha. Analysis of fatigue failure mode transition in load-carrying fillet-welded connections[J]. Marine Structures, 2016, 46: 102 − 126. doi: 10.1016/j.marstruc.2016.01.001
    Seung Jae Kim, Kyung Dong Bae, Yun Jae Kim, et al. The effect of complex crack shape on crack driving forces and crack tip stress fields: Experiment and FE analysis[J]. International Journal of Pressure Vessels and Piping, 2020, 185: 104135. doi: 10.1016/j.ijpvp.2020.104135
    Kou K P, Cao J L, Yang Y, et al. Weight function method for stress intensity factors of semi-elliptical surface cracks on functionally graded plates subjected to non-uniform stresses[J]. Materials, 2020, 13(14): 3155. doi: 10.3390/ma13143155
    Cheng Jiaxing, Sun Bin, Wang Mengyuan, et al. Analysis of III crack in a finite plate of functionally graded piezoelectric/piezomagnetic materials using boundary collocation method[J]. Archive of Applied Mechanics, 2019, 89(2): 231 − 243. doi: 10.1007/s00419-018-1462-y
    Alireza Akhavan Safar, Mazaher Salamat talab, Arsalan Ajdani, et al. Mode II fracture energy characterization of brittle adhesives using compliance calibration method[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(9): 1928 − 1937.
    Silva A L L, Jesus A M P de, Xavier J, et al. Combined analytical-numerical methodologies for the evaluation of mixed-mode (I+II) fatigue crack growth rates in structural steels[J]. Engineering Fracture Mechanics, 2017, 185: 124 − 138. doi: 10.1016/j.engfracmech.2017.04.016
    Zhang Hui, Ali Fatemi. Short fatigue crack growth behavior under mixed-mode loading[J]. International Journal of Fracture, 2010, 165(1): 1 − 19. doi: 10.1007/s10704-010-9497-2
  • Related Articles

    [1]WANG Xiaowei, ZHANG Bin, ZENG Ruchuan, YAN Zhaoyang, CHEN Shujun. Microstructure and mechanical properties of welds at keyhole closures in variable-polarity plasma arc welding of Al alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 1-6. DOI: 10.12073/j.hjxb.20230402001
    [2]QIAO Lixue, YU Gang, DONG Hao, CAO Rui, CHE Hongyan, WANG Tiejun. Effect of heat treatment process on microstructure and mechanical properties of M390/304 CMT welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 49-56. DOI: 10.12073/j.hjxb.20220325011
    [3]LIU Huijie, GAO Yisong, ZHANG Quansheng, ZHAO Huihui. Microstructure and mechanical properties of friction stir welded joint of 2A14-T4 aluminum alloy thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 20-24, 42. DOI: 10.12073/j.hjxb.20210615001
    [4]WANG Hu, JIN Likun, PENG Yun. Microstructure and mechanical properties of joints of a new Al-Mg-Mn-Er alloy by TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 74-79. DOI: 10.12073/j.hjxb.20190924002
    [5]ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076
    [6]WANG Ting1, LI Hongjian1, JIANG Siyuan1, ZHANG Binggang2, FENG Jicai1,2. Microstructure and mechanical properties of EBWbrazed titanium to aluminum joint using AlSi5 filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 1-4. DOI: 10.12073/j.hjxb.20150928001
    [7]XUE Zhiqing, HU Shengsun, ZUO Di, SHEN Junqi. Microstructural characteristics and mechanical properties of laser-welded copper and aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 51-54.
    [8]ZHAO Xudong, XIAO Rongshi. Microstructure and mechanical properties of aluminum alloy and galvanized steel joints by fiber laser fusion welding-brazing using a rectangular spot with filler powder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 41-44.
    [9]QIAO Jisen, YU Jiangrui, GOU Ningnian, YUAN Xiaoer. Development of microstructure influence on mechanical properties of fusion welding joints of aluminium alloy 2A12[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 5-8.
    [10]YANG Yang, CHEN Zhongping, LI Dahe, LIU Xiaohui. Microstructure and mechanical properties of Monel alloy copper explosive clad interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 53-56.
  • Cited by

    Periodical cited type(2)

    1. 江小辉,戴园城,郭维诚,杨天豪. 层间距对棒材送进式搅拌摩擦沉积增材2219铝合金组织及力学性能影响. 焊接学报. 2025(02): 102-111 . 本站查看
    2. 何智,许知非,盛卫星,肖珺,陈树君. Al-Cu-Mg-Ag耐热合金的CMT电弧熔积特性. 焊接. 2025(03): 8-13+29 .

    Other cited types(0)

Catalog

    Article views (326) PDF downloads (36) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return