Citation: | SU Yunhai, YANG Taisen, DAI Zhiyong, WANG Yingdi, LIANG Xuewei, WU Xinggang. Analysis of Cl− corrosion resistance of Inconel 625 deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 64-70. DOI: 10.12073/j.hjxb.20201229001 |
Maj P, Koralnik M, Adamczyk-Cieslak B, et al. Mechanical properties and microstructure of Inconel 625 cylinders used in aerospace industry subjected to flow forming with laser and standard heat treatment[J]. International Journal of Material Forming, 2019, 12(1): 135 − 144. doi: 10.1007/s12289-018-1413-8
|
张建晓, 管志忱, 黄健康, 等. Incoloy 825 镍基高温合金电子束焊工艺及接头组织与力学性能分析[J]. 焊接学报, 2020, 41(10): 32 − 37. doi: 10.12073/j.hjxb.20200702001
Zhang Jianxiao, Guan Zhichen, Huang Jiankang, et al. Electron beam welding process, microstructure and mechanical properties of Incoloy 825 nickel base superalloy joint[J]. Transactions of the China Welding Institution, 2020, 41(10): 32 − 37. doi: 10.12073/j.hjxb.20200702001
|
Sun R, Shi Y, Yang Y, et al. Microstructure, element segregation and performance of Inconel 625 metal layer deposited by laser assisted ultra-high frequency induction deposition[J]. Surface and Coatings Technology, 2021, 405: 126715. doi: 10.1016/j.surfcoat.2020.126715
|
张宇, 姜云, 胡晓安. 选区激光熔化成形 Inconel 625 合金的激光焊接头组织及高温蠕变性能[J]. 焊接学报, 2020, 41(5): 78 − 84. doi: 10.12073/j.hjxb.20191211001
Zhang Yu, Jiang Yun, Hu Xiaoan. Microstructure and high temperature creep properties of laser welded Inconel 625 alloy formed by selective laser melting[J]. Transactions of the China Welding Institution, 2020, 41(5): 78 − 84. doi: 10.12073/j.hjxb.20191211001
|
Sun H, Wang J, Li Z, et al. Corrosion behavior of 316SS and Ni-based alloys in a ternary NaCl-KCl-MgCl2 molten salt[J]. Solar Energy, 2018, 171(9): 320 − 329.
|
Sun H, Zhang P, Wang J. Effects of alloying elements on the corrosion behavior of Ni-based alloys in molten NaCl-KCl-MgCl2 salt at different temperatures[J]. Corrosion Science, 2018, 143(10): 187 − 199.
|
Li X Q, Hao B X, Chen Y X, et al. The microscopic mechanical performance for nonuniform welded joint of nickel-based alloy with nanoindentation[J]. China Welding, 2019, 28(2): 33 − 38.
|
李俊谊. 几种材料在氯化物储热熔盐中腐蚀行为研究[D]. 西安: 西安科技大学, 2018.
Li Junyi. Study on corrosion behavior of several materials in chloride storage molten salt[D]. Xi’an: Xi’an University of Science and Technology, 2018.
|
马宏芳. Inconel625合金在氯化物熔盐中腐蚀行为研究[D]. 西安: 西安科技大学, 2017.
Ma Hongfang. Study on corrosion behavior of Inconel625 alloy in chloride molten salt[D]. Xi’an: Xi’an University of Science and Technology, 2017.
|
Kumar N P, Shanmugam N S, Sreedhar G. High cycle fatigue behaviour of Inconel 625 weld overlay on AISI 316 l plate[J]. Surface and Coatings Technology, 2021, 415: 127 − 138.
|
Sarvghad M, Maher S D, Collard D, et al. Materials compatibility for the next generation of concentrated solar power plants[J]. Energy Storage Materials, 2018, 17(14): 179 − 198.
|
Vernouillet A, Put A V, Pugliara A, et al. Metal dusting of Inconel 625 obtained by laser beam melting effect of manufacturing process and hot isostatic pressure treatment[J]. Corrosion Science, 2020, 174: 108820. doi: 10.1016/j.corsci.2020.108820
|
薛洪迪. Inconel 625合金在不同介质环境中的高温腐蚀机理研究[D]. 兰州: 兰州理工大学, 2019.
Xue Hongdi. Study on high temperature corrosion mechanism of Inconel 625 alloy in different media[D]. Lanzhou: Lanzhou University of Technology, 2019.
|
Wd A, Tb B. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants[J]. Engineering, 2021, 7(3): 334 − 347.
|
Eom H C, Park H, Yoon H S. Preparation of anhydrous magnesium chloride from ammonium magnesium chloride hexahydrate[J]. Advanced Powder Technology, 2010, 21(2): 125 − 130. doi: 10.1016/j.apt.2010.01.003
|
Georges J K, Donald R S. A thermochemical analysis of the production of anhydrous MgCl2[J]. Journal of Light Metals, 2001, 1(2): 115 − 117.
|
Huang Q, Lu G, Wang J, et al. Thermal decomposition mechanisms of MgCl6HO and MgClHO[J]. Journal of Analytical & Applied Pyrolysis, 2011, 91(1): 159 − 164.
|
Wang J W, Bao Z L, Ye H H, et al. Corrosion behavior of carbon steel and iron-chromium[J]. Rare Metal Materials and Engineering, 2020, 49(2): 0412 − 0421.
|
Samantaroy P K, Girija S, Kaul R, et al. Enhancement of corrosion resistance of nickel based superalloys by laser surface melting[J]. Surface Engineering, 2013, 29(7): 522 − 530. doi: 10.1179/1743294413Y.0000000147
|
Boyce M P. Gas turbine engineering handbook[M]. Houston Texas: Gulf professional publishing, 2nd, 2011.
|
Kong D J, Wu Y Z. Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions[J]. Journal of Iron Steel Research, 2013, 20: 40 − 46.
|
丁阳. 镍铝青铜合金应力腐蚀开裂及腐蚀疲劳行为的微观机理研究[D]. 上海: 上海交通大学, 2019.
Ding Yang. Study on micro mechanism of stress corrosion cracking and corrosion fatigue behavior of nickel aluminum bronze alloy[D]. Shanghai: Shanghai Jiaotong University, 2019.
|
Volpe L, Curioni M, Burke M G, et al. Thermodynamic equivalence charts for stress corrosion cracking studies in hydrogenated steam, high pressure and supercritical water[J]. Journal of the Electrochemical Society, 2021, 168(1): 011501.
|
[1] | ZHANG Tianyi, ZHU Zhiming, ZHU Chuanhui. Position and pose feedback control of welding torch based on the fusion of vision and gravity sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 1-7. DOI: 10.12073/j.hjxb.20210604001 |
[2] | ZENG Qingfei, LIU Xuemei, QIU Chengrong. Inverse kinematics and error analysis of cooperative welding robot with multiple manipulators[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 21-27. DOI: 10.12073/j.hjxb.2019400282 |
[3] | GUO Jichang, ZHU Zhiming, CHEN Minhe, LI Qiuyu. Structural design and kinematics modeling of welding robot system for box-type steel structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 32-37. DOI: 10.12073/j.hjxb.2018390196 |
[5] | ZHU Xiaopeng, ZHANG Ke, TU Zhiqiang, HUANG Jie. Calibration of relative position and orientation between robot and positioner based on spheres fitting method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 41-44. |
[6] | ZHOU Youhang, ZHANG Jianxun, DONG Yinsong. An optimization algorithm for combination inverse kinematics problems of welding robot in complex trajectory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (9): 21-24. |
[7] | DU Hongwang, WANG Zongyi, LIU Shaogang, ZHAO Yanan. Kinematics and track amendments of intersecting pipe welding robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 45-48. |
[8] | REN Fushen, CHEN Shujun, YIN Shuyan, GUAN Xinyong. Modeling on weld position and welding torch pose in welding of intersected pipes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 33-36. |
[9] | GAO Hongming, LIANG Zhimin, DONG Na, WU Lin. 3D modeling of task space for tele-robotic welding based on stereo vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 5-8. |
[10] | YUAN Can, HONG Bo, PAN Ji-luan, QU Yue-bo. Kinematics modeling for arc welding robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 70-72. |