Advanced Search
SU Yunhai, YANG Taisen, DAI Zhiyong, WANG Yingdi, LIANG Xuewei, WU Xinggang. Analysis of Cl corrosion resistance of Inconel 625 deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 64-70. DOI: 10.12073/j.hjxb.20201229001
Citation: SU Yunhai, YANG Taisen, DAI Zhiyong, WANG Yingdi, LIANG Xuewei, WU Xinggang. Analysis of Cl corrosion resistance of Inconel 625 deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 64-70. DOI: 10.12073/j.hjxb.20201229001

Analysis of Cl corrosion resistance of Inconel 625 deposited metal

More Information
  • Received Date: December 28, 2020
  • Available Online: August 16, 2021
  • In order to study the corrosion behavior of Inconel 625 deposited metal in Cl- corrosive solution, the corrosion behavior of deposited metal immersed in molten salt and room temperature stress corrosion cracking behavior at different temperatures were studied by means of static immersion corrosion and slow strain rate tension. X-ray diffraction (XRD) and S-3400N scanning electron microscope were used to systematically study the phase composition, corrosion morphology and element distribution of the deposited metal. The results show that: in the static immersion corrosion, the corrosion weight loss of deposited metal shows an increasing trend at both temperatures, but the increasing range is different in different time intervals. The corrosion weight loss of deposited metal increases slowly in the first 10 h, and increases sharply in the 10 ~ 60 h. It can be found that 10 h is the dividing point of corrosion behavior. The corrosion resistance of the deposited metal at 700 ℃ is better than that at 900 ℃, because the dense MgO shell appears on the surface of the deposited metal at 700 ℃, which can hinder the corrosion reaction; At 900 ℃, due to the existence of CrCl3, the "shell breaking effect" appears, which destroys the MgO shell and reduces its corrosion resistance. For slow strain rate tensile test, the tensile strength of specimens in corrosive medium is 22.97% lower than that in air medium, and the susceptibility index of stress corrosion cracking is 30.39%, which indicates that Cl- in corrosive medium will increase the susceptibility of specimens to stress corrosion cracking.
  • Maj P, Koralnik M, Adamczyk-Cieslak B, et al. Mechanical properties and microstructure of Inconel 625 cylinders used in aerospace industry subjected to flow forming with laser and standard heat treatment[J]. International Journal of Material Forming, 2019, 12(1): 135 − 144. doi: 10.1007/s12289-018-1413-8
    张建晓, 管志忱, 黄健康, 等. Incoloy 825 镍基高温合金电子束焊工艺及接头组织与力学性能分析[J]. 焊接学报, 2020, 41(10): 32 − 37. doi: 10.12073/j.hjxb.20200702001

    Zhang Jianxiao, Guan Zhichen, Huang Jiankang, et al. Electron beam welding process, microstructure and mechanical properties of Incoloy 825 nickel base superalloy joint[J]. Transactions of the China Welding Institution, 2020, 41(10): 32 − 37. doi: 10.12073/j.hjxb.20200702001
    Sun R, Shi Y, Yang Y, et al. Microstructure, element segregation and performance of Inconel 625 metal layer deposited by laser assisted ultra-high frequency induction deposition[J]. Surface and Coatings Technology, 2021, 405: 126715. doi: 10.1016/j.surfcoat.2020.126715
    张宇, 姜云, 胡晓安. 选区激光熔化成形 Inconel 625 合金的激光焊接头组织及高温蠕变性能[J]. 焊接学报, 2020, 41(5): 78 − 84. doi: 10.12073/j.hjxb.20191211001

    Zhang Yu, Jiang Yun, Hu Xiaoan. Microstructure and high temperature creep properties of laser welded Inconel 625 alloy formed by selective laser melting[J]. Transactions of the China Welding Institution, 2020, 41(5): 78 − 84. doi: 10.12073/j.hjxb.20191211001
    Sun H, Wang J, Li Z, et al. Corrosion behavior of 316SS and Ni-based alloys in a ternary NaCl-KCl-MgCl2 molten salt[J]. Solar Energy, 2018, 171(9): 320 − 329.
    Sun H, Zhang P, Wang J. Effects of alloying elements on the corrosion behavior of Ni-based alloys in molten NaCl-KCl-MgCl2 salt at different temperatures[J]. Corrosion Science, 2018, 143(10): 187 − 199.
    Li X Q, Hao B X, Chen Y X, et al. The microscopic mechanical performance for nonuniform welded joint of nickel-based alloy with nanoindentation[J]. China Welding, 2019, 28(2): 33 − 38.
    李俊谊. 几种材料在氯化物储热熔盐中腐蚀行为研究[D]. 西安: 西安科技大学, 2018.

    Li Junyi. Study on corrosion behavior of several materials in chloride storage molten salt[D]. Xi’an: Xi’an University of Science and Technology, 2018.
    马宏芳. Inconel625合金在氯化物熔盐中腐蚀行为研究[D]. 西安: 西安科技大学, 2017.

    Ma Hongfang. Study on corrosion behavior of Inconel625 alloy in chloride molten salt[D]. Xi’an: Xi’an University of Science and Technology, 2017.
    Kumar N P, Shanmugam N S, Sreedhar G. High cycle fatigue behaviour of Inconel 625 weld overlay on AISI 316 l plate[J]. Surface and Coatings Technology, 2021, 415: 127 − 138.
    Sarvghad M, Maher S D, Collard D, et al. Materials compatibility for the next generation of concentrated solar power plants[J]. Energy Storage Materials, 2018, 17(14): 179 − 198.
    Vernouillet A, Put A V, Pugliara A, et al. Metal dusting of Inconel 625 obtained by laser beam melting effect of manufacturing process and hot isostatic pressure treatment[J]. Corrosion Science, 2020, 174: 108820. doi: 10.1016/j.corsci.2020.108820
    薛洪迪. Inconel 625合金在不同介质环境中的高温腐蚀机理研究[D]. 兰州: 兰州理工大学, 2019.

    Xue Hongdi. Study on high temperature corrosion mechanism of Inconel 625 alloy in different media[D]. Lanzhou: Lanzhou University of Technology, 2019.
    Wd A, Tb B. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants[J]. Engineering, 2021, 7(3): 334 − 347.
    Eom H C, Park H, Yoon H S. Preparation of anhydrous magnesium chloride from ammonium magnesium chloride hexahydrate[J]. Advanced Powder Technology, 2010, 21(2): 125 − 130. doi: 10.1016/j.apt.2010.01.003
    Georges J K, Donald R S. A thermochemical analysis of the production of anhydrous MgCl2[J]. Journal of Light Metals, 2001, 1(2): 115 − 117.
    Huang Q, Lu G, Wang J, et al. Thermal decomposition mechanisms of MgCl6HO and MgClHO[J]. Journal of Analytical & Applied Pyrolysis, 2011, 91(1): 159 − 164.
    Wang J W, Bao Z L, Ye H H, et al. Corrosion behavior of carbon steel and iron-chromium[J]. Rare Metal Materials and Engineering, 2020, 49(2): 0412 − 0421.
    Samantaroy P K, Girija S, Kaul R, et al. Enhancement of corrosion resistance of nickel based superalloys by laser surface melting[J]. Surface Engineering, 2013, 29(7): 522 − 530. doi: 10.1179/1743294413Y.0000000147
    Boyce M P. Gas turbine engineering handbook[M]. Houston Texas: Gulf professional publishing, 2nd, 2011.
    Kong D J, Wu Y Z. Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions[J]. Journal of Iron Steel Research, 2013, 20: 40 − 46.
    丁阳. 镍铝青铜合金应力腐蚀开裂及腐蚀疲劳行为的微观机理研究[D]. 上海: 上海交通大学, 2019.

    Ding Yang. Study on micro mechanism of stress corrosion cracking and corrosion fatigue behavior of nickel aluminum bronze alloy[D]. Shanghai: Shanghai Jiaotong University, 2019.
    Volpe L, Curioni M, Burke M G, et al. Thermodynamic equivalence charts for stress corrosion cracking studies in hydrogenated steam, high pressure and supercritical water[J]. Journal of the Electrochemical Society, 2021, 168(1): 011501.
  • Related Articles

    [1]ZHANG Tianyi, ZHU Zhiming, ZHU Chuanhui. Position and pose feedback control of welding torch based on the fusion of vision and gravity sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 1-7. DOI: 10.12073/j.hjxb.20210604001
    [2]ZENG Qingfei, LIU Xuemei, QIU Chengrong. Inverse kinematics and error analysis of cooperative welding robot with multiple manipulators[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 21-27. DOI: 10.12073/j.hjxb.2019400282
    [3]GUO Jichang, ZHU Zhiming, CHEN Minhe, LI Qiuyu. Structural design and kinematics modeling of welding robot system for box-type steel structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 32-37. DOI: 10.12073/j.hjxb.2018390196
    [5]ZHU Xiaopeng, ZHANG Ke, TU Zhiqiang, HUANG Jie. Calibration of relative position and orientation between robot and positioner based on spheres fitting method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 41-44.
    [6]ZHOU Youhang, ZHANG Jianxun, DONG Yinsong. An optimization algorithm for combination inverse kinematics problems of welding robot in complex trajectory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (9): 21-24.
    [7]DU Hongwang, WANG Zongyi, LIU Shaogang, ZHAO Yanan. Kinematics and track amendments of intersecting pipe welding robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 45-48.
    [8]REN Fushen, CHEN Shujun, YIN Shuyan, GUAN Xinyong. Modeling on weld position and welding torch pose in welding of intersected pipes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 33-36.
    [9]GAO Hongming, LIANG Zhimin, DONG Na, WU Lin. 3D modeling of task space for tele-robotic welding based on stereo vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 5-8.
    [10]YUAN Can, HONG Bo, PAN Ji-luan, QU Yue-bo. Kinematics modeling for arc welding robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 70-72.

Catalog

    Article views (349) PDF downloads (28) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return