Advanced Search
ZHAN Rui, WANG Dongpo, DENG Caiyan, CUI Lei, GUAN Wei, LIANG Hang. Effect of ultrasonic peening on fatigue performance of aluminum alloy FSW joints with root defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 7-12. DOI: 10.12073/j.hjxb.20201220001
Citation: ZHAN Rui, WANG Dongpo, DENG Caiyan, CUI Lei, GUAN Wei, LIANG Hang. Effect of ultrasonic peening on fatigue performance of aluminum alloy FSW joints with root defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 7-12. DOI: 10.12073/j.hjxb.20201220001

Effect of ultrasonic peening on fatigue performance of aluminum alloy FSW joints with root defects

More Information
  • Received Date: December 19, 2020
  • Available Online: August 16, 2021
  • Four-point bending fatigue tests were carried out to investigate the effects of ultrasonic impact treatment (UIT), ultrasonic peening (UP) and UIT + UP on the fatigue properties of aluminum alloy FSW joints with root “kissing bonding” defects, and the mechanism of the fatigue performance improvement was explored by analyzing the defect morphologies, microhardness values and residual stress distributions of the samples before and after treatments. Compared with the result that the fatigue strength of FSW joints treated by ultrasonic impact treatment at the root is improved only under 2 × 106 cycles, the results show that UP and UIT + UP can significantly improve the high-cycle fatigue performance, and the fatigue strength is increased by 13% and 40% respectively, corresponding to 2 × 106 cycles. UIT combined with UP cannot only form the compact work hardening layer at the root defects of the FSW joint, increase the microhardness, but also introduce the wider compressive residual stress region near the weld root by UP, eliminate the fold defects probably caused by UIT, significantly improving the fatigue performance.
  • Magalhase V M, Leitao C, Rodrigues D M. Friction stir welding industrialization and research status[J]. Science and Technology of Welding and Joining, 2018(23): 400 − 409.
    Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science and Engineering: R: Reports, 2005, 50(1−2): 1 − 78. doi: 10.1016/j.mser.2005.07.001
    高崇, 李书磊, 刘贞山, 等. 焊接速度对5754铝合金FSW接头微观组织和力学性能的影响[J]. 焊接学报, 2020, 41(2): 80 − 86. doi: 10.12073/j.hjxb.20190921002

    Gao Chong, Li Shulei, Liu Zhenshan, et al. Effect of travel speeds on microstructures and mechanical properties of friction-stir welded 5754 aluminum alloy sheets[J]. Transactions of the China Welding Institution, 2020, 41(2): 80 − 86. doi: 10.12073/j.hjxb.20190921002
    Lü Zongliang, Han Zhenyu, Zhu Dong, et al. Enlarged-end tool for friction stir lap welding towards hook defect controlling[J]. China Welding, 2020, 29(1): 1 − 7.
    Zhou Caizhi, Yang Xing, Luan Guohong. Effect of root flaws on the fatigue property of friction stir welds in 2024-T3 aluminum alloys[J]. Materials Science and Engineering A, 2006, 418(1−2): 155 − 160. doi: 10.1016/j.msea.2005.11.042
    郭超. 基于垫板/凹槽设计铝合金FSW接头完整性及力学性能研究[D]. 南京: 南京航空航天大学, 2019.

    Guo Chao. Research on integrity and mechanical properties of friction stir welding of aluminum alloy adopting upper sheet/grooved backing plate[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
    戴启雷, 王秀义, 侯振国, 等. 焊接速度对AA6082搅拌摩擦焊接头根部缺陷及性能的影响[J]. 焊接学报, 2006, 36(8): 27 − 30. doi: 10.3321/j.issn:0253-360X.2006.08.008

    Dai Qilei, Wang Xiuyi, Hou Zhenguo, et al. Effect of travel speed on the root-defects and mechanical properties of friction stir welded AA6082 alloy joint[J]. Transactions of the China Welding Institution, 2006, 36(8): 27 − 30. doi: 10.3321/j.issn:0253-360X.2006.08.008
    Dickerson T L, Przydatek J. Fatigue of friction stir welds in aluminum alloys that contain root flaws[J]. International Journal of Fatigue, 2003(25): 1399 − 1409.
    Guo Shiqing, Luqman Shah, Rakesh Ranjan, et al. Effect of quality control parameter variations on the fatigue performance of aluminum friction stir welded joints[J]. International Journal of Fatigue, 2019(118): 150 − 161.
    郝宗斌, 李晓泉, 李阳, 等. 多重旋转碾压对铝合金搅拌摩擦焊缝表面的影响[J]. 焊接学报, 2017, 38(2): 125 − 128.

    Hao Zongbin, Li Xiaoquan, Li Yang, et al. Impact of multiple rotating rolling on aluminum alloy friction stir weld surface[J]. Transactions of the China Welding Institution, 2017, 38(2): 125 − 128.
    Hatamleh O. A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA2915 joints[J]. International Journal of Fatigue, 2009, 31(5): 974 − 988. doi: 10.1016/j.ijfatigue.2008.03.029
    Li W Y, Li N, Yang X W, et al. Impact of cold spraying on microstructure and mechanical properties of optimized friction stir welded AA2024-T3 joint[J]. Materials Science and Engineering: A, 2018(702): 73 − 80.
    金玉花, 吴永武, 王希靖, 等. 滚动轧制对铝合金搅拌摩擦焊接头性能的影响[J]. 焊接学报, 2019, 40(4): 50 − 54. doi: 10.12073/j.hjxb.2019400099

    Jin Yuhua, Wu Yongwu, Wang Xijing, et al. Effect of rolling on friction stir welded joints of aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(4): 50 − 54. doi: 10.12073/j.hjxb.2019400099
    梁行, 姜云禄, 陈怀宁, 等. 残余应力对薄板激光搭接接头力学性能的影响[J]. 焊接学报, 2017, 38(10): 112 − 116. doi: 10.12073/j.hjxb.20170301001

    Liang Hang, Jiang Yunlu, Chen Huaining, et al. Effect of residual stress on mechanic properties of sheet laser overlap welding joints[J]. Transactions of the China Welding Institution, 2017, 38(10): 112 − 116. doi: 10.12073/j.hjxb.20170301001
  • Related Articles

    [1]WANG Shiyang, LIU Shiwei, HOU Xingyu, SUN Yuan, CAO Nan, SHI Wanpeng. Effect of wire composition on weldability of a Ni-based superalloy welded by TIG method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 31-36, 60. DOI: 10.12073/j.hjxb.20220401001
    [2]PEI Longji, HU Zhiyue, QU Long, JIANG Shuying, ZHANG Junli. Microstructure and properties of TA2/ Co13Cr28Cu31Ni28/ Q235 pulsed TIG weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 90-96. DOI: 10.12073/j.hjxb.20210427002
    [3]ZHAI Qiuya, LIU Shuaibin, YANG Quanhu, YE Jianlin, Xu Jinfeng. Microstructure and properties of Ta1/Ta8Ni30Cr20Cu42/0Cr18Ni9 energy storage welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 60-64, 86. DOI: 10.12073/j.hjxb.20200822001
    [4]SUN Yang, LIU Yaliang, LI He, YANG Xinhua, XU Hongji. Rapid fatigue strength assessment of SUS301L-Q235B dissimilar materials spot-welded joint based on infrared thermography[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 61-66. DOI: 10.12073/j.hjxb.20190304001
    [5]LIU Zhengjun, WU Dan, SU Yunhai. Effect of boron element on formation of acicular ferrite in weld metal with flux cored wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 19-24. DOI: 10.12073/j.hjxb.2018390291
    [6]FAN Wenxue, CHEN Furong, XIE Ruijun, TANG Dafu. Analysis of vibration fatigue S-N curve on Q235B steel butt welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 39-42.
    [7]WANG Ke, ZHENG Zhentai, XUE Haitao, SONG Hongwei. Microstructure of 254SMO/Q235B dissimilar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 105-108.
    [8]ZHANG Min, LÜ Jinbo, LÜ Na, LI Jihong. Welding material for TA1 and structure refining of its welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 45-48.
    [9]LIN Sanbao, SONG Jianling, MA Guangchao, YANG Chunli, WANG Yinjie. Microstructure and properties of dissimilar metals TIG welding-brazing joint of aluminum alloy to stainless steel using Al-Si flux-cored wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 9-12.
    [10]WEI Qi, LI Wen-jing, ZHU Xue-jun, HU Qiang. Study on Hardness and Redhardness of Surfacing Metal of Metal Powder-Cored Wire of Age Hardening Tool Alloy for TIG Surfacing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 49-52.
  • Cited by

    Periodical cited type(1)

    1. 张德龙,张宏乐,王宇凯,赵彦军,田锦涛,杜春峰. 重型结构件智能焊接工艺及参数优化研究与应用. 中国机械. 2023(32): 38-41+45 .

    Other cited types(1)

Catalog

    Article views (400) PDF downloads (32) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return