Advanced Search
XIONG Zhiliang, WANG Ping, MENG Jinkui, SUN Guang, QIU Zhensheng. Redistribution analysis of welding residual stress of aluminum alloy CT specimen[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 65-69. DOI: 10.12073/j.hjxb.20201006001
Citation: XIONG Zhiliang, WANG Ping, MENG Jinkui, SUN Guang, QIU Zhensheng. Redistribution analysis of welding residual stress of aluminum alloy CT specimen[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 65-69. DOI: 10.12073/j.hjxb.20201006001

Redistribution analysis of welding residual stress of aluminum alloy CT specimen

More Information
  • Received Date: October 05, 2020
  • Available Online: January 24, 2021
  • A finite element model of 7005 aluminum alloy weldment was established to simulate and analyze the redistribution of residual stress in the compact tensile specimen (CT specimen) extracted from the plate. The results show that when the notch of the CT specimen is in the weld center line, the transverse residual stress is compressed at both ends of the centerline, the middle is in the tensile state, and the longitudinal residual stress is in the compressed state, while when the notch is opened in the weld toe, the transverse residual stress is compressed at both ends, the middle is in the tensile state, and the longitudinal residual stress is in the tensile state. When the notch is in the base metal, the transverse residual stress is in the tensile state at both ends, the compression state in the middle, and the tensile state in the longitudinal residual stress. Further analysis shows that when the distance between the center line of the weld and the edge of the CT specimen exceeds the width of the specimen 1/4, the transverse residual stress at both ends is compressed and the middle is tensile, otherwise it shows the opposite rule. The longitudinal residual stress in the center of the weld decreases with the decrease of the width of the base metal. With the help of the 3-Bar model, it is found that when the width of the base metal on one side of the weld is less than 59 mm, the residual stress in the center line of the weld is compressed.
  • Hou C Y, Lawrence F V. Crack closure in weldments[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 19(6): 683 − 693.
    Bussu G, Irving P E. The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints[J]. International Journal of Fatigue, 2003, 25(1): 77 − 88. doi: 10.1016/S0142-1123(02)00038-5
    Fratini L, Pasta S, Reynolds A P. Fatigue crack growth in 2024-T351 friction stir welded joints: Longitudinal residual stress and microstructural effects[J]. International Journal of Fatigue, 2009, 31(3): 495 − 500. doi: 10.1016/j.ijfatigue.2008.05.004
    丁叁叁, 李强, 苟国庆. 残余应力对高速列车A7005铝合金焊接接头疲劳行为的影响[J]. 焊接学报, 2016, 37(9): 23 − 28.

    Ding Sansan, Li Qiang, Gou Guoqing. Effect of residual stress on fatigue behavior of welded joint of A7005 aluminum alloy for high-speed trcion[J]. Transactions of the China Welding Institution, 2016, 37(9): 23 − 28.
    张正伟, 张昭, 张洪武. 焊接残余应力对2024铝合金薄板疲劳寿命的影响[J]. 焊接学报, 2014, 35(10): 29 − 32.

    Zhang Zhengwei, Zhangzhao, Zhang Hongwu. Influence of welding residual stresses on fatigue life of Al 2024 plate[J]. Transactions of the China Welding Institution, 2014, 35(10): 29 − 32.
    王强. CRH2型动车车体底架焊接结构可靠性研究[D]. 哈尔滨工业大学, 2012.

    Wang Qiang. Research on reliability of vehicle chassis welded components of CRH2[D]. Harbin Institute of Technology, 2012.
    方洪渊. 焊接结构学[M]. 北京: 机械工业出版社, 2008.

    Fang Hongyuan. Mechanics of welding structure[M]. Beijing: Mechanical Industry Press, 2008.
  • Related Articles

    [1]2020-3 Abstract[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 97-102.
    [2]WANG Ping, LIU Yong, CHANG Hexi, DONG Pingsha. Brief analyses of thermo-mechanical coupling issue on welding structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 6-11. DOI: 10.12073/j.hjxb.2019400173
    [3]2019-3 Abstract[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 161-168.
    [4]CHI Dazhao, MA Ziqi, CHENG Yi, ZHAO Zibo, TANG Ziheng. Defect testing for 3D printed hollow structure using X ray CT technique[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 22-26. DOI: 10.12073/j.hjxb.2018390266
    [5]DU Bing, SUN Fenglian, LI Xiaoyu, SUN Jingtao, LÜ Xiaochun. Effect of sample size on fracture toughness of SA508-3 steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(6): 1-4.
    [6]XU Jijin. Effect of material hardening model on welding residual stresses of 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(3): 97-100.
    [7]CHI Luxin, MA Yonglin. Analysis of residual stresses on large-scale wall pipe circular weld of SA508-3 steel for nuclear power[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (8): 85-88.
    [8]CHI Luxin, MA Yonglin, XING Shuqing, CHEN Furong, CHEN Zhongyi. Numerical simulation and experiments test of residual stress of longitudinal weld of thick SA508-3 steel pipe for nuclear power[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 59-62,67.
    [9]JIANG Wen-chun, GONG Jian-ming, CHEN Hu, TU Shan-dong. 3-D finite element analysis of welding residual stress for halfpipe jacket made of 304 stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 77-80.
    [10]WANG Da-yong, FENG Ji-cai. 3 dimensional flow modeling of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 46-50.
  • Cited by

    Periodical cited type(7)

    1. 陈文仕,何日恒,金礼,姚屏. 电流波形对2209双相不锈钢双丝增材制造的影响. 机电工程技术. 2025(04): 46-49+111 .
    2. 夏玉峰,滕海灏,张雪,郑德宇,权国政. Ti-6Al-4V合金电弧熔丝增材的组织性能研究进展. 重庆大学学报. 2022(04): 87-99 .
    3. 刘玉项,王启伟,朱胜. 励磁电流对6061铝合金MIG焊熔敷层组织及性能的影响. 焊接技术. 2021(05): 12-16+179 .
    4. 张大越,刘旭明,张建,李彬周,赵阳,王军生. TC4-DT激光熔丝增材制造微观组织与力学性能研究. 钢铁钒钛. 2021(06): 97-101 .
    5. 李广德,王瑛,李伟伦. 热处理制度对汽车用TC6钛合金组织及性能的影响. 钢铁钒钛. 2021(06): 147-152 .
    6. 徐国建,柳晋,陈冬卅,马瑞鑫,苏允海. 正火温度对电弧增材制造Ti-6Al-4V组织与性能的影响. 焊接学报. 2020(01): 39-43+99 . 本站查看
    7. 杨东青,王小伟,黄勇,李晓鹏,王克鸿. 熔化极电弧增材制造18Ni马氏体钢组织和性能. 焊接学报. 2020(08): 6-9+21+97 . 本站查看

    Other cited types(5)

Catalog

    Article views (389) PDF downloads (32) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return