Citation: | WEI Wei, SUN Yibo, YANG Guang, SUN Yang, YANG Xinhua. Fatigue strength evaluation of Q460 weld joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 49-55. DOI: 10.12073/j.hjxb.20200907001 |
Zhang L, Liu X, Wu S H, et al. Rapid determination of fatigue life based on temperature evolution[J]. International Journal of Fatigue, 2013, 54(9): 1 − 6.
|
Jacobsen T K, Srensen B F, Brndsted P. Measurement of uniform and localized heat dissipation induced by cyclic loading[J]. Experimental Mechanics, 1998, 38(4): 289 − 294. doi: 10.1007/BF02410391
|
杨鑫华, 孙屹博, 邹丽. 网格不敏感结构应力的焊接疲劳数据分布[J]. 焊接学报, 2015, 36(2): 11 − 14.
Yang Xinhua, Sun Yibo, Zou Li. Data distribution in welding fatigue analysis based on mesh-insensitive structural stress[J]. Transactions of the China Welding Institution, 2015, 36(2): 11 − 14.
|
Wei G Q, Ochbileg O, Xu D Y, et al. Combine S-N curve and fracture mechanics for fatigue life analysis of welded structures[J]. China Welding, 2019, 28(4): 39 − 45.
|
Fan J L, Guo X L, Wu C W. A new application of the infrared thermography for fatigue evaluation and damage assessment[J]. International Journal of Fatigue, 2012, 44: 1 − 7. doi: 10.1016/j.ijfatigue.2012.06.003
|
樊俊铃, 郭杏林, 赵延广, 等. 定量热像法预测焊接接头的S-N曲线和残余寿命[J]. 材料工程, 2011(12): 29 − 33. doi: 10.3969/j.issn.1001-4381.2011.12.007
Fan Junling, Guo Xinling, Zhao Yanguang, et al. Predictions of S-N curve and residual life of welded joints by quantitative thermographic method[J]. Journal of Materials Engineering, 2011(12): 29 − 33. doi: 10.3969/j.issn.1001-4381.2011.12.007
|
Liu Y L, Sun Y B, Sun Y, et al. Rapid fatigue life prediction for spot-welded joint of SUS301 L-DLT stainless steel and Q235B carbon steel based on energy dissipation[J]. Advances in Mechanical Engineering, 2018, 10(11): 1 − 11.
|
孙杨, 刘亚良, 李赫, 等. 基于红外热像法的SUS301L-Q235B异种材料点焊接头疲劳强度快速评定[J]. 焊接学报, 2020, 41(1): 61 − 66.
Sun Yang, Liu Yaliang, Li He, et al. Rapid fatigue limit prediction of SUS301L-Q235B dissimilar materials spot-welded joint based on infrared thermography[J]. Transactions of the China Welding Institution, 2020, 41(1): 61 − 66.
|
Fargione G, Geraci A, Rosa G L, et al. Rapid determination of the fatigue curve by the thermographic method[J]. International Journal of Fatigue, 2002, 24(1): 11 − 19. doi: 10.1016/S0142-1123(01)00107-4
|
Luong M, Van K D. Metal fatigue limit evaluation using infrared thermography[C]//Proceedings of Workshop Advanced Infrared Technology and Applications. Capri (Italy), 1994: 245−253.
|
Luong M P. Fatigue limit evaluation of metals using an infrared thermographic technique[J]. Mechanics of Materials, 1998, 28(1): 155 − 163.
|
Yang W P, Guo X L, Guo Q, et al. Rapid evaluation for high-cycle fatigue reliability of metallic materials through quantitative thermography methodology[J]. International Journal of Fatigue, 2019, 124: 461 − 472.
|
Fan J L, Guo X L, Wu C W, et al. Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints[J]. Materials Science and Engineering: A, 2011, 528(29): 8417 − 8427.
|
刘亚良. 基于疲劳损伤熵的点焊接头累积损伤评估方法研究[D]. 大连: 大连交通大学, 2018.
Liu Yaliang. Research on curnulative damage assessment method of spot welded joint based on fatigue damage entropr[D]. Dalian: Dalian Jiaotong University, 2018.
|
Guo Q, Guo X L, Fan J L, et al. An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation[J]. International Journal of Fatigue, 2015, 80(11): 136 − 144.
|
Guo Q, Guo X L. Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation[J]. Materials & Design, 2016, 90: 248 − 255.
|
郭强, 郭杏林, 樊俊铃, 等. 基于固有耗散的FV520B钢高周疲劳性能研究[J]. 金属学报, 2015, 51(4): 18 − 24.
Guo Qiang, Guo Xinling, Fan Junling, et al. Research on high-cycle fatigue behavior of FV520B steel based on intrinsic dissipation[J]. Acta Metallurgica Sinica, 2015, 51(4): 18 − 24.
|
Wei W, Li C, Sun Y, et al. Investigation of the self-heating of Q460 butt joints and an S-N curve modeling method based on infrared thermographic data for high-cycle fatigue[J]. Metals, 2021, 11(2): 232.
|
Yang W P, Guo X L, Guo Q. A high-cycle fatigue energy dissipation accurate estimation method considering natural convection and radiation heat transfer[J]. International Journal of Fatigue, 2020, 138: 105717. doi: 10.1016/j.ijfatigue.2020.105717
|
Huang J, Pastor M L, Garnier C, et al. Rapid evaluation of fatigue limit on thermographic data analysis[J]. International Journal of Fatigue, 2017, 104: 293 − 301. doi: 10.1016/j.ijfatigue.2017.07.029
|
Rosa G L, Risitano A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[J]. International Journal of Fatigue, 2000, 22(1): 65 − 73. doi: 10.1016/S0142-1123(99)00088-2
|
Montesano J, Fawaz Z, Bougherara H. Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite[J]. Composite Structures, 2013, 97(5): 76 − 83.
|
Fan J L, Zhao Y G, Guo X L, et al. A unifying energy approach for high-cycle fatigue behavior evaluation[J]. Mechanics of Materials, 2018, 120(5): 15 − 25.
|
樊俊铃. 基于能量耗散的Q235钢高周疲劳性能评估[J]. 机械工程学报, 2018, 54(6): 1 − 9.
Fan Junling. High cycle fatigue behavior evaluation of Q235 steel based on energy dissipation[J]. Journal of Mechanical Engineering, 2018, 54(6): 1 − 9.
|
Holman J P. Heat transfer[M]. New York: McGraw-Hill, 2010.
|
[1] | WEN ChengZhi, WANG Shanlin, XIN Jijun, SUN Wenjun, WANG Chengcheng, FENG Dianyuan. Microstructure and mechanical properties of electron beam weldedjoint of IC10 Ni-base singlecrystal superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073.j/hjxb.20240220001 |
[2] | ZHAO Pengfei, WANG Xuhao, GUO Yang, WANG Ting, ZHANG Yusheng, XU Jian, MAO Guijun. Effect of welding speed on microstructure and mechanical properties of electron beam welded joints of 12Cr heat-resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 55-62. DOI: 10.12073/j.hjxb.20240507004 |
[3] | TENG Bin, WU Pengbo, LI Xiaoguang, ZOU Jipeng, WANG Shiyang, CHEN Xiaoyu, JIA Lichao. Microstructure and properties of GH3128 alloy laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 82-87. DOI: 10.12073/j.hjxb.20220406001 |
[4] | WANG Chungui, ZHAO Yunqiang, Deng Jun, Dong Chunlin, You Jiaqing. Microstructure evolution and mechanical properties of robotic friction stir welded joints of 2024-T4 ultra-thin aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 49-54. DOI: 10.12073/j.hjxb.20201208002 |
[5] | GUO Shun, WANG Pengxiang, ZHOU Qi, ZHU Jun, GU Jieren. Microstructure and mechanical properties of bimetallic intertexture structure fabricated by plasma arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 14-19. DOI: 10.12073/j.hjxb.20201125004 |
[6] | ZHENG Shaoxian, LI Yenan, SHI Wei, ZHAO Xilong. Microstructures and mechanical properties of welding joint of Q235/1Cr18Ni9Ti dissimilar steel with ultra-narrow-gap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 38-43. DOI: 10.12073/j.hjxb.2019400206 |
[7] | LIN Panpan, LIN Tiesong, HE Peng, WANG Maochang, YANG Hangao. Microstructure and mechanical property of Al2O3/Ti joint with biocompatibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 16-23. DOI: 10.12073/j.hjxb.2019400175 |
[8] | LIU Kaixuan, SUN Zhuanping, YANG Xinqi, DU Bo, SONG Jianling. Microstructure and mechanical properties of friction plug welding for friction stir welded aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 118-125. DOI: 10.12073/j.hjxb.2019400165 |
[9] | XING Xixue, DI Xinjie. Microstructure and properties of a nickel-base superalloy deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 73-76. |
[10] | TAN Bing, WANG Youqi, CHEN Donggao, WANG Ying. Microstructure and properties of electron beam welded joints of AZ31B magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 75-78. |
1. |
蔺春发,李响,韩雨蔷,董龙龙,戴宇轩,朱铖祺. 铝/钢异种金属焊接及增材制造研究进展. 稀有金属材料与工程. 2025(02): 524-532 .
![]() | |
2. |
王浩,刘坤,吴红,周军波,李杰,张清林. 船舶铝合金增材制造技术的研究现状及展望. 材料开发与应用. 2024(02): 17-27+43 .
![]() | |
3. |
谭攀,盛陈,邱成果,黎帮金,杨栋华,丛伟,许惠斌. 啃削量对铝/钢啃削辅助电弧熔钎焊接头组织与性能的影响. 焊接学报. 2023(04): 98-104+135 .
![]() | |
4. |
苗玉刚,刘吉,赵羽杨,李春旺,王子然,张本顺. “电弧+搅拌摩擦”复合增材制造铝/钢的组织和耐腐蚀性分析. 焊接学报. 2023(10): 41-48+135 .
![]() | |
5. |
彭聪,刘桂谦,刘秀航,张南峰,高向东. 镍中间层对304/5052激光-MIG复合焊接头组织与力学性能的影响. 机械制造文摘(焊接分册). 2022(02): 19-23 .
![]() | |
6. |
王卫军,郭紫威,代孝红,王鑫. 汽车液压油缸316L不锈钢复合增材工艺及性能研究. 应用激光. 2022(12): 59-65 .
![]() | |
7. |
矫显明,谷洪新. 船舶焊接技术及焊接材料的选择. 船舶物资与市场. 2021(01): 53-54 .
![]() | |
8. |
张岩,闫婉迪,国旭明,张占伟,徐荣正. 基于熔化极电弧增材制造的控“形”与控“性”技术研究现状与展望. 有色金属工程. 2021(06): 17-23 .
![]() | |
9. |
彭聪,刘桂谦,刘秀航,张南峰,高向东. 镍中间层对304/5052激光-MIG复合焊接头组织与力学性能的影响. 焊接. 2021(06): 19-23+62 .
![]() | |
10. |
苗玉刚,赵羽扬,刘吉,尹晨豪,吕磊. 铝-钢堆焊-搅拌摩擦复合焊接头特性分析. 焊接学报. 2021(12): 72-77+101 .
![]() | |
11. |
刘应中. 国内海船新造船电气专业相关注意事项研究. 船舶物资与市场. 2020(04): 9-11 .
![]() |