Advanced Search
ZHANG Zhongming, XUE Long, LI Qilong, HUANG Jiqiang, XU Chunjie. Corrosion behavior of X65 pipeline steel welded joints by hyperbaric GMAW in simulated seawater[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 45-50. DOI: 10.12073/j.hjxb.20200824001
Citation: ZHANG Zhongming, XUE Long, LI Qilong, HUANG Jiqiang, XU Chunjie. Corrosion behavior of X65 pipeline steel welded joints by hyperbaric GMAW in simulated seawater[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 45-50. DOI: 10.12073/j.hjxb.20200824001

Corrosion behavior of X65 pipeline steel welded joints by hyperbaric GMAW in simulated seawater

More Information
  • Received Date: August 23, 2020
  • Available Online: April 11, 2021
  • Hyperbaric dry GMAW is widely employed commercially in the fabrication and maintenance of submarine oil and gas pipelines. The corrosion behaviors of welded joint in seawater are therefore of utmost importance in security operation of the pipelines. The corrosion performance and mechanism of X65 pipeline steel welded joints by hyperbaric GMAW under different ambient pressures (0.1, 0.3, 0.5 MPa) were studied by polarization curves and immersion simulation experiments in artificial seawater. It was found that compared with the welding base metal and welded zone, the corrosion resistance of heat affected zone is the worst, and the ambient pressure has little effect on the corrosion resistance of the welded joint. Corrosion morphology and corrosion product shows that pitting corrosion is the main corrosion form for the welded joints, and serious local pitting corrosion occurs at the late immersion stage. The corrosion product is composed of FeOOH, Fe2O3 and Fe3O4. The corrosion product on the surface of the welded joints can mitigate the corrosion at the initial immersion stage. With prolonged immersion durations, the compactness of the corrosion products layer reduces, the metal under the layer is vulnerable to the corrosion by Cl, and thus the local pitting corrosion process is promoted.
  • 周建龙, 李晓刚, 程学群, 等. 深海环境下金属及合金材料腐蚀研究进展[J]. 腐蚀科学与防护技术, 2010, 22(1): 47 − 51.

    Zhou Jianlong, Li Xiaogang, Cheng Xuequn, et al. Research progress on corrosion of metallic materials in deep sea environment[J]. Corrosion Science & Protection Technology, 2010, 22(1): 47 − 51.
    丁扬. X65管线钢高压GMAW工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    Ding Yang. Research on X65 pipeline steel GMAW process under high pressure[D]. Harbin: Harbin Institute of Technology, 2014.
    Majumdar J D. Underwater welding-present status and future scope[J]. Journal of Naval Architecture and Marine Engineering, 2006, 3(1): 38 − 47.
    Łabanowski J, Fydrych D, Rogalski G. Underwater welding-a review[J]. Advances in Materials Science, 2009, 8(3): 11 − 22.
    黄继强, 薛龙, 吕涛, 等. 水下高压空气环境下GMAW电弧特性试验[J]. 焊接学报, 2010, 31(12): 17 − 20.

    Huang Jiqiang, Xue Long, Lü Tao, et al. Experiment on characteristics of GMAW arc in underwater hyperbaric air condition[J]. Transactions of the China Welding Institution, 2010, 31(12): 17 − 20.
    刘剑, 薛龙, 黄继强, 等. 水下高压干式环境下压力及焊接参数对GMAW 焊缝成形的影响[J]. 焊接学报, 2016, 37(2): 29 − 32.

    Liu Jian, Xue Long, Huang Jiqiang, et al. Effect of pressure and welding parameters on weld bead geometry of GMAW in underwater hyperbaric dry environment[J]. Transactions of the China Welding Institution, 2016, 37(2): 29 − 32.
    Xue Long, Wu Jinming, Huang Junfen, et al. Welding polarity effects on weld spatters and bead geometry of hyperbaric dry GMAW[J]. Chinese Journal of Mechanical Engineering, 2016, 29(2): 351 − 356. doi: 10.3901/CJME.2015.1104.131
    郑朋朋, 薛龙, 黄继强, 等. 基于多因素权重法的高压GMAW 焊缝成形分析[J]. 焊接学报, 2018, 39(10): 75 − 80.

    Zheng Pengpeng, Xue Long, Huang Jiqiang, et al. Analysis on weld bead geometry of hyperbaric GMAW based on multi-factor weighting method[J]. Transactions of the China Welding Institution, 2018, 39(10): 75 − 80.
    李凯, 高洪明, 李海超, 等. 焊接极性对水下高压干法GMAW影响分析[J]. 焊接学报, 2014, 35(8): 108 − 112.

    Li Kai, Gao Hongming, Li Haichao, et al. Effect of welding polar on dry hyperbaric GMAW process[J]. Transactions of the China Welding Institution, 2014, 35(8): 108 − 112.
    冯静, 薛龙, 黄军芬, 等. 高压环境下湿度对低碳钢熔化极气体保护焊焊接质量的影响[J]. 上海交通大学学报, 2016, 50(10): 1631 − 1634.

    Feng Jing, Xue Long, Huang Junfen, et al. Influence of humidity on welding quality of gas metal arc welding in hyperbaric environment[J]. Journal of Shanghai Jiao Tong University, 2016, 50(10): 1631 − 1634.
    刘宏, 薛龙, 黄继强, 等. 环境压力对熔化极气体保护焊焊缝强度及韧性的影响[J]. 上海交通大学学报, 2016, 50(10): 1613 − 1617.

    Liu Hong, Xue Long, Huang Jiqiang, et al. Influence of environmental pressure on strength and toughness of weld by Gas Metal Arc Welding[J]. Journal of Shanghai Jiao Tong University, 2016, 50(10): 1613 − 1617.
    王瑜, 黄继强, 薛龙, 等. 不同环境压力下X65管线钢焊接接头的组织及硬度[J]. 铸造技术, 2016, 37(10): 2193 − 2196.

    Wang Yu, Hang Jiqiang, Xue Long, et al. Microstructure and hardness of welding joints of X65 pipeline steel under different environmental pressures[J]. Foundry Technology, 2016, 37(10): 2193 − 2196.
    Igor A Chaves, Robert E Melchers. Pitting corrosion in pipeline steel weld zones[J]. Corrosion Science, 2011, 53(12): 4026 − 4032. doi: 10.1016/j.corsci.2011.08.005
    Rihan R O. Electrochemical corrosion behavior of X52 and X60 steels in carbon dioxide containing saltwater solution[J]. Material Research, 2013, 16(1): 227 − 236.
    Vera R, Vinciguerra F, Bagnara M. Comparative study of the behavior of API 5L-X65 grade steel and ASTM A53-B grade steel against corrosion in seawater[J]. International Journal of Electrochemical Science, 2015, 10(8): 6187 − 6198.
    刘智勇, 贾静焕, 杜翠薇, 等. X80和X52钢在模拟海水环境中的腐蚀行为与规律[J]. 中国腐蚀与防护学报, 2014, 34(4): 327 − 332. doi: 10.11902/1005.4537.2013.129

    Liu Zhiyong, Jia Jinghuan, Du Cuiwei, et al. Corrosion behavior of X80 and X52 steels in simulated seawater environments[J]. Journal of Chinese Society for Corrosion and Protection, 2014, 34(4): 327 − 332. doi: 10.11902/1005.4537.2013.129
    孔德军, 王进春, 叶存冬. X70高钢级管线钢焊接接头盐雾腐蚀机理[J]. 焊接学报, 2015, 36(5): 51 − 54.

    Kong Dejun, Wang Jinchun, Ye Cundong. Mechanism of salt spray corrosion of X70 high grade pipeline steel welded joints[J]. Transactions of the China Welding Institution, 2015, 36(5): 51 − 54.
    范舟, 刘建仪, 李士伦, 等. X70管线钢焊接接头组织及其海水腐蚀规律[J]. 西南石油大学学报 (自然科学版), 2009, 31(5): 171 − 174.

    Fan Zhou, Liu Jianyi, Li Shilun, et al. Microstructure and seawater corrosion to welding joint of X70 pipeline steel[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(5): 171 − 174.
    刘智勇, 万红霞, 李禅, 等. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比[J]. 中国腐蚀与防护学报, 2014, 34(4): 321 − 326. doi: 10.11902/1005.4537.2013.156

    Liu Zhiyong, Wan Hongxia, Li Chan, et al. Comparative study on corrosion of X65 pipeline steel welded joint in simulated shallow and deep-sea environment[J]. Journal of Chinese Society for Corrosion and Protection, 2014, 34(4): 321 − 326. doi: 10.11902/1005.4537.2013.156
    林鑫, 杜敏, 李成杰, 等. DH36钢焊接件海水腐蚀行为研究[J]. 中国海洋大学学报(自然科学版), 2013, 43(3): 70 − 74.

    Lin Xin, Du Min, Li Chengjie, et al. Study on corrosion in seawater of welded DH36 steel[J]. Periodical of Ocean University of China, 2013, 43(3): 70 − 74.
    Liang Ping, Shi Yanhua, Zhang Yunxia, et al. Characterization of passive film formed on X80 pipeline steel in sodium bicarbonate solution[J]. Advanced Materials Research, 2013(690−693): 101 − 105.
    李金波, 左剑恶. 温度对X80管线钢钝化膜电化学性能的影响[J]. 中国腐蚀与防护学报, 2009, 29(1): 40 − 43. doi: 10.3969/j.issn.1005-4537.2009.01.008

    Li Jinbo, Zuo Jian’e. Influence of temperature on the electrochemical property of passive film formed on x80 pipeline steel[J]. Journal of Chinese Society for Corrosion and Protection, 2009, 29(1): 40 − 43. doi: 10.3969/j.issn.1005-4537.2009.01.008
    张忠明, 马莹, 马艳艳, 等. Mg-1Zn-1Mn合金微弧氧化膜在SBF模拟体液中的腐蚀行为[J]. 材料热处理学报, 2018, 39(5): 108 − 116.

    Zhang Zhongming, Ma Ying, Ma Yanyan, et al. Corrosion behavior of micro-arc oxidation film of Mg-1Zn-1Mn alloy in SBF simulated body fluid[J]. Transactions of Materials and Heat Treatment, 2018, 39(5): 108 − 116.
    Wang Yafei, Cheng Guangxu, Wu Wei, et al. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions[J]. Applied Surface Science, 2015, 349(15): 746 − 756.
    刘智勇, 董超芳, 贾志军, 等. X70钢在模拟潮湿存储环境中的点蚀行为[J]. 金属学报, 2011, 47(8): 1009 − 1016.

    Liu Zhiyong, Dong Chaofang, Jia Zhijun, et al. Pitting corrosion of X70 pipeline steel in the simulated wet storage environment[J]. Acta Metallurgica Sinica, 2011, 47(8): 1009 − 1016.
  • Related Articles

    [1]ZHOU Yaju, YIN Shengming, XIA Yongzhong, YI Guoqiang, XUE Lihong, YAN Youwei. Effect of heat treatment on the microstructure and mechanical properties of wire arc additively manufactured ferrite/martensitic steel for nuclear applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 18-26. DOI: 10.12073/j.hjxb.20221011001
    [2]CHI Luxin, HUANG Yan, XU Huibin, GU Lingxiang, ZHANG Yuhu, RAN Yang, WU Jiangchuan. Analysis on interface characteristics and metal particle distributions in electromagnetic pulse welding with aluminum to steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 36-43. DOI: 10.12073/j.hjxb.20220523001
    [3]ZHOU Jinpeng, MA Jie, LU Xiaofeng, ZHU Xiaolei, WANG Jian. Numerical simulation and mechanical properties of spray-assisted friction stir welding RAFM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 104-112. DOI: 10.12073/j.hjxb.20210922001
    [4]LIU Xinquan, FANG Chao, LIU Jin, SONG Kuijing, JI Yukai, WEI Yong, LUO Junrui. Microstructure analysis of additive manufacturing produced RAFM steel laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 44-49. DOI: 10.12073/j.hjxb.20211213003
    [5]ZHANG Chao, CUI Lei, LIU Yongchang, WANG Dongpo, ZHOU Mengbing. Microstructure and mechanical properties of friction stir welded joints of reduced activation ferritic-martensitic steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 52-57. DOI: 10.12073/j.hjxb.2019400154
    [6]ZHANG Jianchao1, QIAO Junnan1, WU Shikai1, LIAO Hongbin2, WANG Xiaoyu2. Microstructure and mechanical properties of fiber laser welded joints of reduced activation ferritic/martensitic CLF-1 steel heavy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 124-128. DOI: 10.12073/j.hjxb.2018390109
    [7]LI Qiang, LIU Binggang, LIU Pengchuang, DENG Guangping. Research on interface characteristics of tungsten alloy-HR2 steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 37-40.
    [8]WANG Yarong, ZHANG Yongzhi, XU Chao, YU Yang. Effect of EB off-set on joint of vanadium alloy to stainlesssteel by electron beam isolation welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 35-38.
    [9]MA Yunzhu, WANG Yanyan, LIU Wensheng, CAI Qingshan. Interface microstructure and mechanical properties of diffusion bonded joints between tungsten and ferritic steel with vanadium interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 17-20.
    [10]LI Jun-hui, HAN Lei, TAN Jian-ping, ZHONG Jue. Structure characteristics and evolution at wedge bonding interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (4): 5-8.
  • Cited by

    Periodical cited type(4)

    1. 李田,严佑锐凌,张明军,张跃敏. 基于8字形摆动的钢/铝激光焊接头组织和性能. 焊接学报. 2025(02): 112-119+135 . 本站查看
    2. 王一丰,张忠明,马威龙,祁嘉伟,徐春杰,杨长林. 基于二次通用旋转组合设计的冷金属过渡电弧增材制造AZ31镁合金焊道截面尺寸研究. 热加工工艺. 2024(05): 18-23 .
    3. 弭光宝,孙若晨,吴明宇,谭勇,邱越海,李培杰,黄旭. 航空发动机钛合金分子动力学计算技术研究进展. 航空材料学报. 2024(02): 87-103 .
    4. 张群兵,张阔,于佳恩,张勇进,陈旭飞,陈立明,张建勋. Ti60钛合金激光焊接接头微观组织与低周疲劳性能研究. 西安航空学院学报. 2024(05): 25-32+70 .

    Other cited types(3)

Catalog

    Article views (378) PDF downloads (26) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return