Citation: | WANG Xingxing, HE Peng, LI Shuai, ZHANG Shuye, LUO Jingyi, SATO Yutaka. Application of high-throughput methods in the field of brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 1-7. DOI: 10.12073/j.hjxb.20200809001 |
王海舟, 汪洪, 丁洪, 等. 材料的高通量制备与表征技术[J]. 科技导报, 2015, 33(10): 31 − 49. doi: 10.3981/j.issn.1000-7857.2015.10.003
Wang Haizhou, Wang Hong, Ding Hong, et al. Progress in high-throughput materials synthesis and characterization[J]. Science & Technology Review, 2015, 33(10): 31 − 49. doi: 10.3981/j.issn.1000-7857.2015.10.003
|
赵继成. 材料基因组计划中的高通量实验方法[J]. 科学通报, 2013, 58(35): 3647 − 3655. doi: 10.1360/csb2013-58-35-3647
Zhao Jicheng. High-throughput experimental tools for the materials genome initiative (in Chinese)[J]. China Science Bull (Chin Ver), 2013, 58(35): 3647 − 3655. doi: 10.1360/csb2013-58-35-3647
|
Zhang Y, Guo J M, Chen J H. On the stacking fault energy related deformation mechanism of nano crystalline Cu and Cu alloys: a first-principles and TEM study[J]. Journal of Alloys and Compounds, 2019, 776: 807 − 818. doi: 10.1016/j.jallcom.2018.10.275
|
孙巧艳, 杜勇, 刘立斌, 等. 高性能钛合金的关键“基因”及高通量实验与计算技术的应用[J]. 中国材料进展, 2018, 37(4): 297 − 303.
Sun Qiaoyan, Du Yong, Liu Libin, et al. Key material genome of titanium alloys and application of high-throughput experiment and computation[J]. Materials China, 2018, 37(4): 297 − 303.
|
向勇, 闫宗楷, 朱焱麟, 等. 材料基因组技术前沿进展[J]. 电 子科技大学学报, 2016, 45(4): 634 − 649.
Xiang Yong, Yan Zongkai, Zhu Yilin, et al. Progress on materials genome technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 634 − 649.
|
何鹏, 林盼盼. 基于材料基因组理念的钎焊材料开发与智能钎焊技术创新系统工程[J]. 材料导报, 2019, 33 (1): 156 − 161. doi: 10.11896/cldb.201901018
He Peng, Lin Panpan. The Systematic project involving brazes development and intelligent brazing technology innovation: a materials genome perspective[J]. Materials Reports, 2019, 33 (1): 156 − 161. doi: 10.11896/cldb.201901018
|
SEKULIć D P. Modeling of the sequence of phenomena in brazing[C]//Advances in Brazing: Science, Technology and Applications, Wood head Publishing Series in Welding and Other Joining Technologies, 2013: 55-81.
|
何鹏, 张玲. 智能钎焊技术进展[J]. 焊接学报, 2017, 38(4): 124 − 128. doi: 10.12073/j.hjxb.20170429
He Peng, Zhang Lin. Development of intelligent brazing technology[J]. Transactions of the China Welding Institution, 2017, 38(4): 124 − 128. doi: 10.12073/j.hjxb.20170429
|
李红, 袁俊丽, 栗卓新, 等. 纳米连接过程的分子动力学模拟研究进展[J]. 中国机械工程, 2019, 30(4): 486 − 493. doi: 10.3969/j.issn.1004-132X.2019.04.016
Li Hong, Yuan Junli, Li Zhuoxin, et al. Process of molecular dynamics simulation of nanojoining processes[J]. China Mechanical Engineering, 2019, 30(4): 486 − 493. doi: 10.3969/j.issn.1004-132X.2019.04.016
|
Swiler T P, Hoehman R E. Molecular dynamics simulations of reactive wetting in metal–ceramic systems[J]. Acta Materialia, 2000, 48: 4419 − 4424. doi: 10.1016/S1359-6454(00)00228-7
|
陈永泰, 谢明, 胡洁琼, 等. 一种三元扩散偶高通量制备和热处理方法: 中国, 201910794666.1[P]. 2019-8-27.
Chen Yongtai, Xie Ming, Hu Jieqiong, et al. A high-throughput preparation and heat treatment method of Ternary diffusion couple: CN Patent, 201910794666.1[P]. 2019-8-27.
|
陈永泰, 谢明, 王松, 等. Ag-6Cu-1Zn-0.5Ni合金变形行为的高通量研究[J]. 贵金属, 2019, 40(S1): 35 − 39.
Chen Yongtai, Xie Ming, Wang Song, et al. High throughput study on deformation behavior of Ag-6Cu-1Zn-0.5Ni alloy[J]. Precious Metals, 2019, 40(S1): 35 − 39.
|
Yang J, Zheng Y, Huang J H, et al. First-principles calculations on wetting interface between Ag-Cu-Ti fillermetal and SiC ceramic: Ag (111)/SiC(111) interface and Ag(111)/TiC(111) interface[J]. Applied Surface Science, 2018, 462: 55 − 64. doi: 10.1016/j.apsusc.2018.08.074
|
王国超. Cu-Ag-Ti2AlC钎焊体系结构稳定性及其连接机理研究[D]. 哈尔滨: 哈尔滨工业大学博士学位论文, 2015.
Wang Guochao. Research on structural stability and joining mechanism of Cu-Ag-Ti2AlC brazing system[D]. Harbin: Dissertation for the Doctoral Degree in Engineering: Harbin Institute of Technology, 2015.
|
Hartz-behrend K, Bach F W, M Hwald K, et al. Classical molecular dynamics simulations (MD) of wetting phenomena in brazing processes[R]. Aachen: DVS-BER ICHTE, 2014.
|
Zhang J, Xu Q, Hu Y L, et al. Interfacial bonding mechanism and adhesive transfer of brazed diamond with Ni-based filler alloy: First-principles and experimental perspective[J]. Carbon, 2019, 153: 104 − 115. doi: 10.1016/j.carbon.2019.07.015
|
Yang J, Huang J H, Zheng Y, et al. First-principles calculations on structural energetics of Cu-Ti binary system intermetallic compounds in Ag-Cu-Ti and Cu-Ni-Ti active filler metals[J]. Ceramics International, 2017, 43: 7751 − 7761. doi: 10.1016/j.ceramint.2017.03.083
|
贾延东, 王刚, 易军, 等. 封装用高硅铝合金结构梯度材料高通量制备装置及方法: 中国, 201610287138.3[P]. 2016−5−4.
Jia Yandong, Wang Gang, Yi Jun, et al. Device and method for high-throughput preparation of structural gradient material of high silicon aluminum alloy for package: CN patent, 201610287138.3[P]. 2016−5−4.
|
韩雨彤. SiC陶瓷与Al基和Sn基钎料钎焊界面结合特性的模拟计算[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2016.
Han Yutong. A first principle calculation of Al based and Sn based solder with SiC ceramic interfacial bonding[D]. Harbin: Dissertation for the Master Degree in Engineering: Harbin Institute of Technology, 2016.
|
贾延东, 耿川, 王刚, 等. Sn-Zn-Cu焊料的高通量制备方法: 中国, 201910557829.4[P]. 2019−6−25.
Jia Yandong, Geng Chuan, Wang Gang, et al. High-throughput preparation of Sn-Zn-Cu solders: CN patent, 201910557829.4[P]. 2019−6−25.
|
Gao F, Qu J M, Takemoto T. Additive qccupancy in the Cu6Sn5-based intermetallic compound between Sn-3.5Ag solder and Cu studied using a first-principles approach[J]. Journal of Electronic Materials, 2010, 39: 426 − 432. doi: 10.1007/s11664-010-1093-8
|
Pang X Y, Liu Z Q, Wang S Q, et al. First-principles Investigation of Bi Segregation at the Solder Interface of Cu/Cu3Sn(010)[J]. Journal of Materials Science & Technology, 2010, 26(12): 1057 − 1062.
|
Xing W Q, Yu X Y, Li H L, et al. Microstructure and mechanical properties of Sn-9Zn-xAl2O3 nanoparticles (x=0–1) lead-free solder alloy: first-principles calculation and experimental research[J]. Materials Science & Engineering A, 2016, 678: 252 − 259.
|
Lu Y, Ma L, Li S Y, et al. Effect of Cu element addition on the interfacial behavior and mechanical properties of Sn9Zn-1Al2O3 soldering 6061 aluminum alloys: First-principle calculations and experimental research[J]. Journal of Alloys and Compounds, 2018, 765: 128 − 139. doi: 10.1016/j.jallcom.2018.06.178
|
Chen J S, Ye C H, Yu C, et al. The micro-mechanism for the effect of Sn grain orientation on substrate consumption in Sn solder joints[J]. Computational Materials Science, 2015, 108: 1 − 7. doi: 10.1016/j.commatsci.2015.05.029
|
Chen J S, Xu M J, Jin Y J, et al. Effect of electric field and Sn grain orientation on Cu consumption in Sn/Cu solder joint[J]. Computational Materials Science, 2014, 95: 166 − 171. doi: 10.1016/j.commatsci.2014.07.019
|
李红, 张续, 黄海新, 等. 钎焊过程数值模拟研究进展[J]. 北京工业大学学报, 2017, 43(6): 956 − 963.
Li Hong, Zhang Xu, Huang Haixin, et al. Progress in the Numerical Simulation of Brazing Process[J]. Journal of Beijing University of Technology, 2017, 43(6): 956 − 963.
|
倪雪辉, 罗辉庭, 叶剑辉. 铝合金换热器集流管隔板钎焊表面污染分析[J]. 压力容器, 2018, 35(8): 58 − 62.
Ni Xuehui, Luo Huiting, Ye Jianhui. Analysis and prevention of surface pollution of aluminum alloy heat exchanger and baffle brazed surface[J]. Pressure Vessel Technology, 2018, 35(8): 58 − 62.
|
1. |
杨义成,冷冰,黄瑞生,聂鑫,马一鸣,武鹏博. 基于高通量测试方法的高功率激光焊接工艺特性分析. 焊接学报. 2021(11): 77-82+101-102 .
![]() |