Advanced Search
WANG Xingxing, HE Peng, LI Shuai, ZHANG Shuye, LUO Jingyi, SATO Yutaka. Application of high-throughput methods in the field of brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 1-7. DOI: 10.12073/j.hjxb.20200809001
Citation: WANG Xingxing, HE Peng, LI Shuai, ZHANG Shuye, LUO Jingyi, SATO Yutaka. Application of high-throughput methods in the field of brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 1-7. DOI: 10.12073/j.hjxb.20200809001

Application of high-throughput methods in the field of brazing

More Information
  • Received Date: August 08, 2020
  • Available Online: February 03, 2021
  • As one of the three major elements of “material genome technology”, high-throughput methods play a key role in material composition design, microstructure analysis, performance optimization, and process simulation. As one of the important branches in the field of welding and joining, brazing technology is the most widely used connection method in modern manufacturing industry. This article first summarizes the application research of the high-throughput method in the field of brazing, and secondly focuses on the latest research reports on high-throughput preparation of braze, high-throughput calculation in the field of soldering and brazing in the past 5 years. Finally, the limitations of current brazing genetic engineering research, especially the shortcomings in the effective combination of high-throughput methods and brazing technology, are put forward. Meanwhile, the research and development direction of high-throughput methods in the field of brazing is pointed out, providing technical support and reference information for the realization of brazing 4.0 and intelligent brazing factory in the future.
  • 王海舟, 汪洪, 丁洪, 等. 材料的高通量制备与表征技术[J]. 科技导报, 2015, 33(10): 31 − 49. doi: 10.3981/j.issn.1000-7857.2015.10.003

    Wang Haizhou, Wang Hong, Ding Hong, et al. Progress in high-throughput materials synthesis and characterization[J]. Science & Technology Review, 2015, 33(10): 31 − 49. doi: 10.3981/j.issn.1000-7857.2015.10.003
    赵继成. 材料基因组计划中的高通量实验方法[J]. 科学通报, 2013, 58(35): 3647 − 3655. doi: 10.1360/csb2013-58-35-3647

    Zhao Jicheng. High-throughput experimental tools for the materials genome initiative (in Chinese)[J]. China Science Bull (Chin Ver), 2013, 58(35): 3647 − 3655. doi: 10.1360/csb2013-58-35-3647
    Zhang Y, Guo J M, Chen J H. On the stacking fault energy related deformation mechanism of nano crystalline Cu and Cu alloys: a first-principles and TEM study[J]. Journal of Alloys and Compounds, 2019, 776: 807 − 818. doi: 10.1016/j.jallcom.2018.10.275
    孙巧艳, 杜勇, 刘立斌, 等. 高性能钛合金的关键“基因”及高通量实验与计算技术的应用[J]. 中国材料进展, 2018, 37(4): 297 − 303.

    Sun Qiaoyan, Du Yong, Liu Libin, et al. Key material genome of titanium alloys and application of high-throughput experiment and computation[J]. Materials China, 2018, 37(4): 297 − 303.
    向勇, 闫宗楷, 朱焱麟, 等. 材料基因组技术前沿进展[J]. 电 子科技大学学报, 2016, 45(4): 634 − 649.

    Xiang Yong, Yan Zongkai, Zhu Yilin, et al. Progress on materials genome technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 634 − 649.
    何鹏, 林盼盼. 基于材料基因组理念的钎焊材料开发与智能钎焊技术创新系统工程[J]. 材料导报, 2019, 33 (1): 156 − 161. doi: 10.11896/cldb.201901018

    He Peng, Lin Panpan. The Systematic project involving brazes development and intelligent brazing technology innovation: a materials genome perspective[J]. Materials Reports, 2019, 33 (1): 156 − 161. doi: 10.11896/cldb.201901018
    SEKULIć D P. Modeling of the sequence of phenomena in brazing[C]//Advances in Brazing: Science, Technology and Applications, Wood head Publishing Series in Welding and Other Joining Technologies, 2013: 55-81.
    何鹏, 张玲. 智能钎焊技术进展[J]. 焊接学报, 2017, 38(4): 124 − 128. doi: 10.12073/j.hjxb.20170429

    He Peng, Zhang Lin. Development of intelligent brazing technology[J]. Transactions of the China Welding Institution, 2017, 38(4): 124 − 128. doi: 10.12073/j.hjxb.20170429
    李红, 袁俊丽, 栗卓新, 等. 纳米连接过程的分子动力学模拟研究进展[J]. 中国机械工程, 2019, 30(4): 486 − 493. doi: 10.3969/j.issn.1004-132X.2019.04.016

    Li Hong, Yuan Junli, Li Zhuoxin, et al. Process of molecular dynamics simulation of nanojoining processes[J]. China Mechanical Engineering, 2019, 30(4): 486 − 493. doi: 10.3969/j.issn.1004-132X.2019.04.016
    Swiler T P, Hoehman R E. Molecular dynamics simulations of reactive wetting in metal–ceramic systems[J]. Acta Materialia, 2000, 48: 4419 − 4424. doi: 10.1016/S1359-6454(00)00228-7
    陈永泰, 谢明, 胡洁琼, 等. 一种三元扩散偶高通量制备和热处理方法: 中国, 201910794666.1[P]. 2019-8-27.

    Chen Yongtai, Xie Ming, Hu Jieqiong, et al. A high-throughput preparation and heat treatment method of Ternary diffusion couple: CN Patent, 201910794666.1[P]. 2019-8-27.
    陈永泰, 谢明, 王松, 等. Ag-6Cu-1Zn-0.5Ni合金变形行为的高通量研究[J]. 贵金属, 2019, 40(S1): 35 − 39.

    Chen Yongtai, Xie Ming, Wang Song, et al. High throughput study on deformation behavior of Ag-6Cu-1Zn-0.5Ni alloy[J]. Precious Metals, 2019, 40(S1): 35 − 39.
    Yang J, Zheng Y, Huang J H, et al. First-principles calculations on wetting interface between Ag-Cu-Ti fillermetal and SiC ceramic: Ag (111)/SiC(111) interface and Ag(111)/TiC(111) interface[J]. Applied Surface Science, 2018, 462: 55 − 64. doi: 10.1016/j.apsusc.2018.08.074
    王国超. Cu-Ag-Ti2AlC钎焊体系结构稳定性及其连接机理研究[D]. 哈尔滨: 哈尔滨工业大学博士学位论文, 2015.

    Wang Guochao. Research on structural stability and joining mechanism of Cu-Ag-Ti2AlC brazing system[D]. Harbin: Dissertation for the Doctoral Degree in Engineering: Harbin Institute of Technology, 2015.
    Hartz-behrend K, Bach F W, M Hwald K, et al. Classical molecular dynamics simulations (MD) of wetting phenomena in brazing processes[R]. Aachen: DVS-BER ICHTE, 2014.
    Zhang J, Xu Q, Hu Y L, et al. Interfacial bonding mechanism and adhesive transfer of brazed diamond with Ni-based filler alloy: First-principles and experimental perspective[J]. Carbon, 2019, 153: 104 − 115. doi: 10.1016/j.carbon.2019.07.015
    Yang J, Huang J H, Zheng Y, et al. First-principles calculations on structural energetics of Cu-Ti binary system intermetallic compounds in Ag-Cu-Ti and Cu-Ni-Ti active filler metals[J]. Ceramics International, 2017, 43: 7751 − 7761. doi: 10.1016/j.ceramint.2017.03.083
    贾延东, 王刚, 易军, 等. 封装用高硅铝合金结构梯度材料高通量制备装置及方法: 中国, 201610287138.3[P]. 2016−5−4.

    Jia Yandong, Wang Gang, Yi Jun, et al. Device and method for high-throughput preparation of structural gradient material of high silicon aluminum alloy for package: CN patent, 201610287138.3[P]. 2016−5−4.
    韩雨彤. SiC陶瓷与Al基和Sn基钎料钎焊界面结合特性的模拟计算[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2016.

    Han Yutong. A first principle calculation of Al based and Sn based solder with SiC ceramic interfacial bonding[D]. Harbin: Dissertation for the Master Degree in Engineering: Harbin Institute of Technology, 2016.
    贾延东, 耿川, 王刚, 等. Sn-Zn-Cu焊料的高通量制备方法: 中国, 201910557829.4[P]. 2019−6−25.

    Jia Yandong, Geng Chuan, Wang Gang, et al. High-throughput preparation of Sn-Zn-Cu solders: CN patent, 201910557829.4[P]. 2019−6−25.
    Gao F, Qu J M, Takemoto T. Additive qccupancy in the Cu6Sn5-based intermetallic compound between Sn-3.5Ag solder and Cu studied using a first-principles approach[J]. Journal of Electronic Materials, 2010, 39: 426 − 432. doi: 10.1007/s11664-010-1093-8
    Pang X Y, Liu Z Q, Wang S Q, et al. First-principles Investigation of Bi Segregation at the Solder Interface of Cu/Cu3Sn(010)[J]. Journal of Materials Science & Technology, 2010, 26(12): 1057 − 1062.
    Xing W Q, Yu X Y, Li H L, et al. Microstructure and mechanical properties of Sn-9Zn-xAl2O3 nanoparticles (x=0–1) lead-free solder alloy: first-principles calculation and experimental research[J]. Materials Science & Engineering A, 2016, 678: 252 − 259.
    Lu Y, Ma L, Li S Y, et al. Effect of Cu element addition on the interfacial behavior and mechanical properties of Sn9Zn-1Al2O3 soldering 6061 aluminum alloys: First-principle calculations and experimental research[J]. Journal of Alloys and Compounds, 2018, 765: 128 − 139. doi: 10.1016/j.jallcom.2018.06.178
    Chen J S, Ye C H, Yu C, et al. The micro-mechanism for the effect of Sn grain orientation on substrate consumption in Sn solder joints[J]. Computational Materials Science, 2015, 108: 1 − 7. doi: 10.1016/j.commatsci.2015.05.029
    Chen J S, Xu M J, Jin Y J, et al. Effect of electric field and Sn grain orientation on Cu consumption in Sn/Cu solder joint[J]. Computational Materials Science, 2014, 95: 166 − 171. doi: 10.1016/j.commatsci.2014.07.019
    李红, 张续, 黄海新, 等. 钎焊过程数值模拟研究进展[J]. 北京工业大学学报, 2017, 43(6): 956 − 963.

    Li Hong, Zhang Xu, Huang Haixin, et al. Progress in the Numerical Simulation of Brazing Process[J]. Journal of Beijing University of Technology, 2017, 43(6): 956 − 963.
    倪雪辉, 罗辉庭, 叶剑辉. 铝合金换热器集流管隔板钎焊表面污染分析[J]. 压力容器, 2018, 35(8): 58 − 62.

    Ni Xuehui, Luo Huiting, Ye Jianhui. Analysis and prevention of surface pollution of aluminum alloy heat exchanger and baffle brazed surface[J]. Pressure Vessel Technology, 2018, 35(8): 58 − 62.
  • Cited by

    Periodical cited type(1)

    1. 杨义成,冷冰,黄瑞生,聂鑫,马一鸣,武鹏博. 基于高通量测试方法的高功率激光焊接工艺特性分析. 焊接学报. 2021(11): 77-82+101-102 . 本站查看

    Other cited types(1)

Catalog

    Article views (660) PDF downloads (109) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return