Advanced Search
WANG Ting, WANG Yifan, WEI Lianfeng, LI Qixian, JIANG Siyuan. Microstructure and properties of low voltage electron beam wire deposition layer of TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 54-59. DOI: 10.12073/j.hjxb.20200803002
Citation: WANG Ting, WANG Yifan, WEI Lianfeng, LI Qixian, JIANG Siyuan. Microstructure and properties of low voltage electron beam wire deposition layer of TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 54-59. DOI: 10.12073/j.hjxb.20200803002

Microstructure and properties of low voltage electron beam wire deposition layer of TC4 titanium alloy

More Information
  • Received Date: August 02, 2020
  • Available Online: December 03, 2020
  • The low voltage electron beam wire deposition tests on TC4 titanium alloy were carried out to explore the feasibility of the method, and the influence of the number of deposited layers on the microstructure and properties was analyzed. The results show that the multi-layer wire deposition of TC4 titanium alloy can also be completed on the accelerated voltage of 10 kV. The average microhardness of the deposited parts after multi-layer deposition is about 260 HV, and only the microhardness of the banded texture at the bottom of the deposited parts is close to 288 HV of the annealed TC4 substrate. Banded texture produced in multi-layer deposition process, β phase grain transformed to α + α′ + β by the influence of thermal cycle, the banded texture which composited with basket-like α′ phase and lamellar α phase have high microhardness, the other feature of banded texture is that more basket-like phase gradually integrated into the lamellar structure as the increase of the distance with substrate. The tensile fracture of the deposited part is also ductile fracture with the maximum tensile strength of 862 MPa, which is slightly lower than the national standard. It because the columnar crystals will become huge in the deposited parts with multiple layers, and equiaxed crystals will also appear. The huge size of the grains will decrease the tensile properties of the deposited parts.
  • Liu X Y, Chu P K, Ding C X. Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Materials Science & Engineering. R, Reports, 2004, 47(3−4): 49 − 121.
    Zhang W G, Wang C G, Liu W M. Characterization and tribological investigation of sol-gel ceramic films on Ti-6Al-4V[J]. Wear, 2006, 260(4−5): 379 − 386. doi: 10.1016/j.wear.2005.05.006
    Dandekar C, Shin Y, Barnes J. Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining[J]. International Journal of Machine Tools and Manufacture, 2010, 50(2): 174 − 182. doi: 10.1016/j.ijmachtools.2009.10.013
    赵剑峰, 马智勇, 谢德巧, 等. 金属增材制造技术[J]. 南京航空航天大学学报, 2014, 46(5): 675 − 683.

    Zhao Jianfeng, Ma Zhiyong, Xie Deqiao, et al. Metal additive manufacturing technology[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(5): 675 − 683.
    Colegrove P, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling[J]. Journal of Materials Processing Technology, 2013, 213(10): 1782 − 1791. doi: 10.1016/j.jmatprotec.2013.04.012
    Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9): 3303 − 3312. doi: 10.1016/j.actamat.2010.02.004
    王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690 − 2698.

    Wang Huaming. Laser additive manufacturing of high-performance large metal components: some material foundation issues[J]. Acta Aeronautica ET Astronautica Sinica, 2014, 35(10): 2690 − 2698.
    Stecker S, Lachenberg KW, Wang H, et al. Advanced electron beam free form fabrication methods & technology[J]. Session, 2006(2): 35 − 46.
    邓贤辉, 杨治军. 钛合金增材制造技术研究现状及展望[J]. 材料开发与应用, 2014, 29(5): 113 − 120.

    Deng Xianhui, Yang Zhijun. Research status and development of additive manufacturing technology of titanium alloy[J]. Development and Application of Materials, 2014, 29(5): 113 − 120.
    黄志涛, 巩水利, 锁红波, 等. 电子束熔丝成形的TC4钛合金的组织与性能研究[J]. 钛工业进展, 2016, 33(5): 33 − 36.

    Huang Zhitao, Gong Shuili, Suo Hongbo, et al. Study on microstructure and properties of TC4 titanium alloy formed by electron beam fuse[J]. Advances in Titanium Industry, 2016, 33(5): 33 − 36.
  • Related Articles

    [1]QIN Hang, CAI Zhihai, ZHU Jialei, WANG Kai, LIU Jian. Microstructure and properties of TC4 titanium alloy by direct underwater laser beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 143-148. DOI: 10.12073/j.hjxb.2019400328
    [2]Taiqi Yan, Yu Wu, Xu Cheng, An Li, Shuquan Zhang. Microstructure and Mechanical Properties of Electron Beam Welded Joints in Different State of TC4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION.
    [3]YAN Taiqi, CHENG Xu, LI An, TIAN Xiangjun, LIU Dong. Microstructure and mechanical properties of electron beam welded joints in different state of TC4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 112-117. DOI: 10.12073/j.hjxb.2019400164
    [4]ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076
    [5]QIAO Jisen, YU Jiangrui, GOU Ningnian, YUAN Xiaoer. Development of microstructure influence on mechanical properties of fusion welding joints of aluminium alloy 2A12[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 5-8.
    [6]HU Meijuan, LIU Jinhe, KANG Wenjun, RUAN Chengyong. Effects of local heat treatment by electron beam on microstructure and properties of TC4 titanium alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 104-107.
    [7]GU Baolan, DING Dawei, WANG Li, XU Xuedong. Effects of heat treatment on microstructure and properties of electron beam welded TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 85-88.
    [8]YIN Lixiang, XU Hongji, WEI Zhiyu, XIE Ming, WANG Yajun. Microstructures and high-temperature properties of TC4 titanium alloy joints welded by electron beam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 49-52.
    [9]MA Tiejun, YANG Siqian, ZHANG Yong, LI Wenya. Mechanical properties and microstructure features of linear friction welded TC4 titanium alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 17-20.
    [10]XU Hong-ji, YIN Li-xiang, LI Jin-wei, XIE Ming. Microstructures and properties of TC4 alloy joints welded by the e lectron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 43-46.
  • Cited by

    Periodical cited type(10)

    1. 郭宁,朱亮,张爱华,周辉,刘振民,孙鹏. 送进式焊剂片约束电弧超窄间隙焊接工艺参数匹配. 电焊机. 2024(03): 60-66 .
    2. 汤国玺,朱亮,张爱华,周辉,郭宁,周毅. 超窄间隙焊接中送进焊剂片与电弧相互作用机制分析. 焊接学报. 2023(03): 54-60+132 . 本站查看
    3. 冯延鹏,张爱华,梁婷婷,马强杰,马晶,王平. 基于改进SSA优化SVM的超窄间隙焊接质量评估. 电子测量与仪器学报. 2023(06): 195-205 .
    4. 何卫隆,王平,张爱华,梁婷婷,马强杰. 基于目标检测的焊接电弧形态在线定量检测. 浙江大学学报(工学版). 2023(09): 1903-1914 .
    5. 姚仁,朱亮,陈欢,张爱华,李增罡. 送进式焊剂片约束电弧超窄间隙焊方法. 焊接技术. 2021(11): 24-27 .
    6. 朱亮,李潇,张爱华,刘强,王秀菊. 槽型钢轨与辙叉的超窄间隙焊接. 焊接. 2020(02): 1-4+9+65 .
    7. 董敏,朱亮,韩潇橦,张爱华,蒋小霞. 焊剂带约束电弧超窄间隙横焊焊缝成形. 电焊机. 2020(08): 57-61+139 .
    8. 乔及森,芮正雷,王磊,陈振文. 基于组合热源模型焊剂片约束电弧焊T形接头温度场及应力场计算与试验研究. 材料导报. 2020(22): 22142-22147 .
    9. 陈振文,乔及森,王磊,芮正雷,朱亮. 焊剂片约束电弧焊三明治板T形接头的组织与性能. 焊接. 2019(09): 5-9+65 .
    10. 陈振文,王磊,芮正雷,乔及森. 高强钢三明治板T形接头焊剂片约束电弧焊电弧行为. 焊接学报. 2019(12): 83-90+164-165 . 本站查看

    Other cited types(10)

Catalog

    Article views (416) PDF downloads (28) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return