Advanced Search
YIN Yan, KANG Ping, LU Chao, ZHANG Yuan, ZHANG Ruihua. Microstructure and microhardness analysis of laser welded dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 71-77. DOI: 10.12073/j.hjxb.20191227002
Citation: YIN Yan, KANG Ping, LU Chao, ZHANG Yuan, ZHANG Ruihua. Microstructure and microhardness analysis of laser welded dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 71-77. DOI: 10.12073/j.hjxb.20191227002

Microstructure and microhardness analysis of laser welded dissimilar steel

More Information
  • Received Date: December 26, 2019
  • Available Online: October 15, 2020
  • After welding dissimilar steel by laser swing welding, the equilibrium phase diagrams of base 3Cr13 and VG10 were calculated by JMATPro software, and the phase composition and microstructure of weld, fusion zone and heat affected zone were analyzed by XRD, SEM, EPMA and other techniques. in addition, the microhardness distribution of welded joints was determined. The results show that the weld is mainly composed of phases and carbides M7C3, and from the fusion line to the weld center, the structure changes from plane crystal to cellular crystal, cellular dendrite, columnar crystal, dendritic crystal and equiaxed crystal. The microstructure of the weld exists micro-segregation, in which C and Cr elements are enriched at the grain boundary, Fe elements are enriched within the grains, and bar-like M7C3 precipitates at the grain boundaries. There is a C migration phenomenon at the base material of the fusion line near. Among them, acicular martensitic structure is generated on the 3Cr13 side, and the unmixed zone exists in the fusion zone on the VG10 side. At this position, the massive, island tissue is embedded in the base Material, and there are lamellar carbides on the structure. The hardness of the base metal on both sides of the fusion line is the largest, and the hardness of the weld zone changes little. The hardness of the heat affected zone decreases with the increase of the distance away from the weld center.
  • Mittal R, Sidhu B S. Microstructures and mechanical properties of dissimilar T91/347H steel weldments[J]. Journal of Materials Processing Technology, 2015, 220: 76 − 86. doi: 10.1016/j.jmatprotec.2015.01.008
    王瑞, 石玗, 李广, 等. 镍对铜/不锈钢GTAW接头导电性及腐蚀性能的影响[J]. 焊接学报, 2019, 40(12): 53 − 58.

    Wang Rui, Shi Yu, Li Guang, et al. Effect of nickel on conductivity and corrosion of copper/stainless steel GTAW joints[J]. Transactions of the China Welding Institution, 2019, 40(12): 53 − 58.
    Liu Liming, Zhou Yanbin. Mechanism analysis of free formation of backing weld by the pulsed MAG-TIG double arc tandem welding[J]. China Welding, 2019, 28(4): 8 − 15.
    Liu G L, Yang S W, Han W T, et al. Microstructural evolution of dissimilar welded joints between reduced-activation ferritic-martensitic steel and 316L stainless steel during the post weld heat treatment[J]. Materials Science and Engineering: A, 2018, 722: 182 − 196. doi: 10.1016/j.msea.2018.03.035
    刘桐, 杨立军, 邱文聪, 等. 304不锈钢激光深熔焊元素蒸发及焊缝合金含量变化[J]. 焊接学报, 2018, 39(2): 8 − 12.

    Liu Tong, Yang Lijun, Qiu Wencong, et al. Vaporization and composition change of 304 stainless steel during keyhole mode laser welding[J]. Transactions of the China Welding Institution, 2018, 39(2): 8 − 12.
    母晓红, 牛旭, 惠文. 激光焊的原理及其应用研究[J]. 科技创新导报, 2009(8): 5 − 6. doi: 10.3969/j.issn.1674-098X.2009.08.004

    Mu Xiaohong, Niu Xu, Hui Wen. Principle and application of laser welding[J]. Science and Technology Innovation Herald, 2009(8): 5 − 6. doi: 10.3969/j.issn.1674-098X.2009.08.004
    He Yannan, Song Qiang, Sun Kang, et al. Microstructure and properties of in-situ chromium carbide composite coating by laser cladding[J]. China Welding, 2018, 27(4): 10 − 17.
    宗攀, 张覃轶, 孙伟, 等. 热处理工艺对大马士革VG10钢组织和性能的影响[J]. 金属热处理, 2018(11): 117 − 122.

    Zong Pan, Zhang Qinyi, Sun Wei, et al. Effect of heat treatment process on microstructure and mechanical properties of Damascus VG10 steel[J]. Heat treatment of metals, 2018(11): 117 − 122.
    尹燕, 栗子林, 许广伟, 等. 3Cr13厨刀碟片激光同轴送粉熔覆层的显微硬度与组织[J]. 焊接学报, 2016, 37(10): 86 − 87.

    Yin Yan, Li Zilin, Xu Guangwei, et al. Microhardness and microstructure of laser cladding layer on 3Cr13 kitchen knife by disc laser coaxial powder[J]. Transactions of the China Welding Institution, 2016, 37(10): 86 − 87.
    徐仰涛, 沙岐振. 基于JMatPro软件对不同B含量下Co-8.8Al-9.8W合金析出相的热力学模拟计算[J]. 稀有金属材料与工程, 2016, 45(9): 2332 − 2336.

    Xu Yangtao, Sha Qizhen. Thermodynamic simulation calculation of Co-8.8A1-9.8W alloy with different B contents based on JMatPro software[J]. Rare Metal Materials and Engineering, 2016, 45(9): 2332 − 2336.
    王鲁, 杨钢, 刘正东, 等. 基于Thermo-Calc和JMatPro模拟计算的新型镍基合金设计[J]. 材料热处理学报, 2017, 38(4): 193 − 199.

    Wang Lu, Yang Gang, Liu Zhengdong, et al. Design of a new Ni-base alloy based on simulated calculation on Thermo-Calc & JMatPro[J]. Transaction of Materials and Heat Treatment, 2017, 38(4): 193 − 199.
    黄继华. 焊接冶金原理[M]. 北京: 机械工业出版社, 2015.

    Huang Jihua. Principle of welding metalluryy[M]. Beijing: China Machine Press, 2015.
    魏翔云, 张玉生. 碳含量对Fe-30Ni-20Cr-6Mo铸造合金元素偏析和耐蚀性的影响[J]. 腐蚀科学与防护技术, 1996(3): 210 − 213.

    Wei Xiangyun, Zhang Yusheng. Effect of carbon content on element segregation and corrosion-resistance of cast alloy fe-30Ni-20Cr-6Mo[J]. Corrosion Science and Protection Technology, 1996(3): 210 − 213.
    潘春旭. 异种钢及异种金属焊接显微结构特征及其转变机理[M]. 北京: 人民交通出版社, 2000.

    Pan Chunxu. Microstructure characteristics and transformation mechonism of dissimilar sreels and metals[M]. Beijing: China Communications Press, 2000.
    Wieczerzak K, Bala P, Stepien M, et al. Formation of eutectic carbides in Fe-Cr-Mo-C alloy during non-equilibrium crystallization[J]. Materials & Design, 2016, 94(3): 61 − 68.
    Chang C M, Lin C M, Hsieh C C, et al. Effect of carbon content on microstructural characteristics of the hypereutectic Fe-Cr-C claddings[J]. Materials Chemistry and Physics, 2009, 117(1): 257 − 261. doi: 10.1016/j.matchemphys.2009.05.052
  • Related Articles

    [1]ZHONG Pu, LI Liangyu, REN Guochun, WANG Tianqi, GUO Dongbo. "Γ" shaped arc and its promotion method in Tri-Arc dual wire welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 54-60. DOI: 10.12073/j.hjxb.20230827001
    [2]ZHANG Gang, XU Zilong, WANG Kaifei, ZHU Ming, SHI Yu. Analysis of arc and weld pool characteristics in direct current added-pulsed TIG welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 75-81. DOI: 10.12073/j.hjxb.20210524003
    [3]LI Chunkai, XI Baolong, SHI Yu, GU Yufen. Spectral analysis of A-TIG welding arc with fluorides activating flux[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 54-58. DOI: 10.12073/j.hjxb.20210201002
    [4]YIN Yan, WANG Zhanchong, ZHANG Ruihua, YUAN Zhengwei, TA Jinguo. Effect of activating flux on laser arc hybrid welded stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 19-22.
    [5]HUANG Yong, LI Tao, WANG Yanlei. Gas transfer flux activating TIG welding process for aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 101-104.
    [6]YANG Zhou, QI Bojin, CONG Baoqiang, YANG Mingxuan, LI Yulong. Effect of pulse frequency on weld appearance behavior of TC4 titanium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 37-40.
    [7]HUANG Yong, FAN Ding, LIN Tao, LUO Huansheng. Arc assisted activating TIG welding process for stainless steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 1-4.
    [8]ZHU Liang, ZHANG Renjun, TIAN Yuji. TIG arc constricted by rotating ceramic plates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 1-4.
    [9]ZHENG Shaoxian, ZHU Liang, ZHANG Xulei, CHEN Jianhong. Constricting arc characteristic with flux strips[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 57-61.
    [10]WU Jun, ZOU Zengda, WANG Xinhong, LI Qingming. Effect of activating flux on electric arc of TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 85-88.
  • Cited by

    Periodical cited type(7)

    1. 蒋凡,张成钰,徐斌,张国凯,闫朝阳,陈树君. 变极性等离子弧焊技术发展及其在航天制造领域应用现状. 航天制造技术. 2024(03): 15-26 .
    2. 王晨阳,李小平,刘骁,王壮壮. 7075与ER5356铝合金焊丝用于7075铝合金MIG焊接头性能对比研究. 世界有色金属. 2023(13): 145-147 .
    3. 丁亚茹,陈芙蓉. 时效处理后铝合金焊接接头组织和性能的变化. 稀有金属材料与工程. 2021(11): 4051-4058 .
    4. 张忠科,武靖伟,赵华夏. 焊后热处理对钛/铝FSB接头组织及性能的影响. 中国有色金属学报. 2020(04): 739-749 .
    5. 张华,郭启龙,赵常宇,林三宝,石功奇. 双级时效对7050-T7451铝合金搅拌摩擦焊组织及应力腐蚀敏感性的影响. 焊接学报. 2020(06): 1-5+97 . 本站查看
    6. 白凤臣,马文姝,于彦东,宋海江. 热处理对TP304H/R102异种钢焊接接头组织和性能的影响. 焊接. 2020(07): 55-60+63-64 .
    7. 张华,郭启龙,赵常宇,林三宝,石功奇. Influence of two-step aging on structure and stress corrosion sensitivity of friction stir welded 7050-T7451 aluminum alloys. China Welding. 2020(04): 1-6 .

    Other cited types(4)

Catalog

    Article views (468) PDF downloads (48) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return