Citation: | HUANG Yuhui, SI Xiaofa, WENG Shuo, XUAN Fuzhen. Effect of fatigue damage on stress corrosion cracking sensitivity of nuclear steam turbine welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 12-19, 37. DOI: 10.12073/j.hjxb.20191113001 |
何阿平, 沈国平, 黄庆华, 等. 中国核电汽轮机发展与展望[J]. 热力透平, 2015, 44(4): 225 − 232.
He Aping, Shen Guoping, Huang Qinghua, et al. Development and prospect of nuclear power turbine in China[J]. Thermal Turbine, 2015, 44(4): 225 − 232.
|
刘大松. 浅析核电百万千瓦汽轮机低压转子焊接质量控制[J]. 中国设备工程, 2019(10): 34 − 36. doi: 10.3969/j.issn.1671-0711.2019.10.029
Liu Dasong. Analysis of the welding quality control of low-pressure rotor of nuclear power million-kilowatt steam turbine[J]. China Plant Engineering, 2019(10): 34 − 36. doi: 10.3969/j.issn.1671-0711.2019.10.029
|
孙康娜, 贺小忠. “华龙一号”核电汽轮机创新设计特点[J]. 热力透平, 2017, 46(2): 93 − 97.
Sun Kangna, He Xiaozhong. Innovative design features of Hualong No.1 nuclear power steam turbine[J]. Thermal Turbine, 2017, 46(2): 93 − 97.
|
欧阳玉清, 黄毓晖, 翁硕, 等. 核电汽轮机焊接转子接头在氯离子环境中的电偶腐蚀行为[J]. 焊接学报, 2019, 40(6): 153 − 160. doi: 10.12073/j.hjxb.2019400171
Ouyang Yuqing, Huang Yuhui, Wong Shuo, et al. Galvanic corrosion behavior of nuclear steam turbine welded joint in chloride environment[J]. Transactions of the China Welding Institution,, 2019, 40(6): 153 − 160. doi: 10.12073/j.hjxb.2019400171
|
Darya Snihirova, Daniel Höche, Sviatlana Lamaka, et al. Galvanic corrosion of Ti6Al4V-AA2024 joints in aircraft environment: modelling and experimental validation[J]. Corrosion Science, 2019, 157: 70 − 78. doi: 10.1016/j.corsci.2019.04.036
|
Wang S Y, Ding J, Ming H L, et al. Characterization of low alloy ferritic steel-Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET[J] Materials Characterization, 2015, 100: 50−60.
|
Luo L H, Huang Y H, Weng S, et al. Mechanism-related modelling of pit evaluation in the CrNiMoV steel in simulated environment of low pressure nuclear steam turbine[J] Materials and Design, 2016, 105: 240−250.
|
Mariusz Banaszkiewicz, Anna Rehmus-Forc. Stress corrosion cracking of a 60 MW steam turbine rotor[J]. Engineering Failure Analysis, 2015, 51: 55 − 68. doi: 10.1016/j.engfailanal.2015.02.015
|
Lin Shuxian, Huang Yuhui, Xuan Fuzhen, et al. Study on stress corrosion cracking sensitivity of CrNiMoV steam turbine rotor steels[J]. Key Engineering Materials, 2019, 4784: 102 − 108.
|
Marko Katinić, Dražan Kozak, Ivan Gelo, et al. Corrosion fatigue failure of steam turbine moving blades: a case study[J]. Engineering Failure Analysis, 2019, 106: 104136. doi: 10.1016/j.engfailanal.2019.08.002
|
Chu Tongjiao, Cui Haichao, Tang Xinhua, et al. Stress corrosion crack growth rate of welded joint used for low-pressure rotor of nuclear turbine in oxygenated pure water at 180 ℃[J]. Journal of Nuclear Materials, 2019, 523: 276 − 290. doi: 10.1016/j.jnucmat.2019.05.047
|
Huang Yuhui, Ouyang Yuqing, Weng Shuo, et al. Effect of loading mode on fracture behavior of CrNiMoV steel welded joint in simulated environment of low pressure nuclear steam turbine[J]. Engineering Fracture Mechanics, 2018, 205: 81 − 93.
|
Lu Z, Shoji T, Xue H, et al. Synergistic effects of local strain-hardening and dissolved oxygen on stress corrosion cracking of 316NG weld heat-affected zones in simulated BWR environments[J]. Journal of Nuclear Materials, 2012, 423(1): 28 − 39.
|
Barella S, Bellogini M,.Boniardi M, et al Failure analysis of a steam turbine rotor[J]. Engineering Failure Analysis, 2011, 18(6): 1511 − 1519. doi: 10.1016/j.engfailanal.2011.05.006
|
王坤, 黄树红, 叶渝怀, 等. 125 MW汽轮机转子的启停调峰试验研究[J]. 华中科技大学学报(自然科学版), 2000, 28(4): 105 − 107.
Wang Kun, Huang Shuhong, Ye Yuhuai, et al. Experimental study on starting and stopping peak shaving of 125 MW steam turbine rotors[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2000, 28(4): 105 − 107.
|
Shankar V, Valsan M, Bhanu Sankara Rao M, et al. Low cycle fatigue behavior and microstructural evolution of modified 9Cr-1Mo ferritic steel[J]. Materials Science and Engineering:A, 2006, 437(2): 413 − 422.
|
Roldán M, Leon-Gutierrez E, Fernández P, et al. Deformation behaviour and microstructural evolution of EUROFER97-2 under low cycle fatigue conditions[J]. Materials Characterization, 2019, 158: 109943. doi: 10.1016/j.matchar.2019.109943
|
Hu X, Huang L, Yan W, et al. Microstructure evolution in CLAM steel under low cycle fatigue[J]. Materials Science and Engineering A, 2014, 607: 356 − 359.
|
Wang D Q, Zhu M L, Xuan F Z. Correlation of local strain with microstructures around fusion zone of a Cr-Ni-Mo-V steel welded joint[J]. Materials Science and Engineering: A, 2017, 685: 205 − 212.
|
Jürgens, Maria, Olbricht, et al. Low cycle fatigue and relaxation performance of ferritic–martensitic grade P92 steel[J]. Metals, 2019, 9(1): 99. doi: 10.3390/met9010099
|
Song Wei, Liu Xuesong, Berto Filippo, et al. Low-cycle fatigue behavior of 10CrNi3MoV high strength steel and its undermatched welds[J]. Materials, 2018, 11(5): 661. doi: 10.3390/ma11050661
|
Cui Kaixuan, Zhao Yanyun, Zhai Yutao, et al. Low cycle fatigue behavior of electron beam welded joint of CLAM steel at room temperature[J]. Fusion Engineering and Design, 2019, 149: 111297. doi: 10.1016/j.fusengdes.2019.111297
|
Weng S, Huang Y H, Xuan F Z, et al. Enhanced galvanic corrosion phenomenon in the welded joint of NiCrMoV steel by low-cycle fatigue behavior[J]. Journal of the Electrochemical Society, 2019, 166(2): 270 − 283.
|
Zheng C, Lü B, Zhang F, et al. Effect of secondary cracks on hydrogen embrittlement of bainitic steels[J]. Materials Science and Engineering: A, 2012, 547: 99 − 103.
|
卢叶茂, 梁益龙, 龙绍檑, 等. 马氏体板条控制单元对20CrNi2Mo钢韧性的影响[J]. 材料研究学报, 2018, 32(4): 290 − 300. doi: 10.11901/1005.3093.2017.301
Lu Yemao, Liang Yilong, Long Shaolei, et al. Effect of martensite lath control unit on the toughness of 20CrNi2Mo steel[J]. Chinese Journal of Materials Research, 2018, 32(4): 290 − 300. doi: 10.11901/1005.3093.2017.301
|
Zhou T, Yu H, Wang S. Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism[J]. Materials Science and Engineering: A, 2016, 658: 150 − 158.
|
Thomasle, Bruemmersm.High-resolution on characterization of intergranular attack and stress corrosion craking alloy 600 in high-temperature primary water[J].Corrosion, 2000,56(6):572 − 587.
|
[1] | LIU Wei, ZHU Yongmei, SUN Ao. Analysis of dynamic stress-strain characteristics of AH36 steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 50-58. DOI: 10.12073/j.hjxb.20230712001 |
[2] | HUANG Yuhui, ZHANG Jianhui, HU Yulin, SUN Wenxuan, XU Yubin, WANG Yihao. Galvanic corrosion behavior and finite element simulation of overlaying welded nuclear steam turbine rotor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 33-39. DOI: 10.12073/j.hjxb.20210222003 |
[3] | OUYANG Yuqing, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Galvanic corrosion behavior of nuclear steam turbine welded joint in chloride environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 153-160. DOI: 10.12073/j.hjxb.2019400171 |
[4] | XIE Fei, WANG Dan, WU Ming, SUN Dongxu. Effects of strain rate on stress corrosion cracking of X80 pipeline steel in ku'erle soil environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 55-58. |
[5] | KONG Dejun, WU Yongzhong, LONG Dan. Effects of laser shock processing on H2S stress corrosion fractures of X70 pipeline steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 13-16. |
[6] | HUANG Yuhui, YANG Bo, XUAN Fuzhen, TU Shandong. Stress corrosion behavior of diffusion bonding joints of 316L stainless steel in environment of acid NaCl solution[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 67-70. |
[7] | XU Lianyong, JING Hongyang, CAO Jun, LI Chunguo, SUN Youhui. H2S stress corrosion invertigation of pipeline steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 12-16. |
[8] | WANG Bingying, HUO Lixing, ZHANG Yufeng, WANG Dongpo. CO32--HCO3- stress corrosion test of welded joint for X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 85-88. |
[9] | Yu Qin, Gong Shui-li. Study of Measuing Technology about Impact Toughness of Welded Joint with High Strain Rate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 71-75. |
[10] | ZHANG Gang, LI Jian-jun, DING Chun-hui. Cyclic Stress-strain Behaviors for Butt Joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (2): 93-96. |
1. |
翁硕,孟超,朱江峰,王艾,常馨,康妘,何小田,赵礼辉. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究. 中国腐蚀与防护学报. 2024(04): 1029-1037 .
![]() | |
2. |
王志鹏,朱明亮,轩福贞. CrMoV与NiCrMoV异种钢焊接接头的高周疲劳性能及寿命模型. 焊接学报. 2024(07): 67-73 .
![]() |