Advanced Search
SU Yunhai, LIANG Xuewei, DENG Yue, LIU Yunqi. Microstructure and property analysis of FeAlCuCrNiNbx high-entropy alloy surfacing layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 38-43, 50. DOI: 10.12073/j.hjxb.20191015001
Citation: SU Yunhai, LIANG Xuewei, DENG Yue, LIU Yunqi. Microstructure and property analysis of FeAlCuCrNiNbx high-entropy alloy surfacing layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 38-43, 50. DOI: 10.12073/j.hjxb.20191015001

Microstructure and property analysis of FeAlCuCrNiNbx high-entropy alloy surfacing layer

More Information
  • Received Date: October 14, 2019
  • Available Online: July 26, 2020
  • In order to study the effect of Nb element content on the structure and properties of FeAlCuCrNiNbx (x = 0.4,0.6,0.8,1.0) high-entropy alloy, the FeAlCuCrNiNbx high-entropy alloy was prepared on the surface of carbon steel sheet by the technique of gas metal arc welding. The microstructure, phase composition, microhardness, wear resistance and corrosion resistance of surfacing layer were analyzed. The results show that: the surfacing layer of FeCuCrAlNiNbx high-entropy alloy is composed of Fe-Cr phase-based BCC solid solution and a few of MC eutectic carbide. The structure is a typical dendrite structure, which is composed of gray dendrite (DR) and white interdendrite (ID) structure. For wear resistance, addition amounts of Nb can significantly improve the microhardness and wear resistance of surfacing layer. The optimal properties of surface layer were obtained when the molar ratio of Nb element is 0.8, which maximum microhardness value is 602 HV, the minimum wear is 0.30 g, respectively. For the corrosion performance, with increase of Nb element addtion amounts, the self-corrosion current density become to reduce, the corrosion rate become to slow, and the corrosion resistance enhances. All of these are better than 304 stainless steel. When the molar ratio of Nb element is 1.0, the corrosion resistance of the surfacing alloy is the best.
  • Guo H, Jurgen E, Wolfgang L, et al. Novel Ti-base nanostructure- dendrite composite with enhanced plasticity[J]. Nature Materials, 2002, 2(1): 33 − 37.
    Zhu Z X, Xu B S, Ma S N, et al. Study on microstructure and properties of high velocity arc sprayed Fe3Al intermetallic coating[J]. China Welding, 2002, 11(1): 1 − 4.
    Huang K H, Yeh J W. A study on multicomponent alloy systems containing equal-mole elements[D]. Hsinchu: National Tsing Hua University, 1996.
    王小荣, 王朝琴, 何鹏. 45钢表面高能微弧火花数控化沉积AlCoCrFeNi高熵合金[J]. 焊接学报, 2016, 37(10): 73 − 76.

    Wang Xiaorong, Wang Zhaoqin, He Peng. Numerical control deposition of AlCoCrFeNi high-entropy alloy on 45 steel by high energy micro arc spark[J]. Transactions of the China Welding Institution, 2016, 37(10): 73 − 76.
    Tung C C, Yeh J W, Shun T T, et al. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system[J]. Materials Letters, 2007, 61(1): 1 − 5. doi: 10.1016/j.matlet.2006.03.140
    尚晓娟. 激光熔覆MoFeCrTiWAlNbx高熔点高熵合金涂层[D]. 贵阳: 贵州大学, 2018.

    Shang Xiaojuan. Laser cladding MoFeCrTiWAlNbx High-melting point high-entropy alloy coatings[D]. Guiyang: Guizhou University, 2018.
    Zhang H, Ye P, He Y Z, et al. Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding[J]. Applied Surface Science, 2011, 257(6): 2259 − 2263. doi: 10.1016/j.apsusc.2010.09.084
    Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy[J]. Acta Materialia, 2014, 65(6): 85 − 97.
    Wang S L, Cui L, Liu H, et al. Effect of molybdenum on the microstructure and wear resistance of hypoeutectic Fe-Cr-B-C hardfacing alloys[J]. China Welding, 2018, 27(4): 46 − 51.
    Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component slloys[J]. Advanced Engineering Materials, 2008, 10(6): 534 − 538. doi: 10.1002/adem.200700240
    Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys[J]. Journal of Applied Physics, 2011, 109(10): 103505. doi: 10.1063/1.3587228
    尚晓娟, 刘其斌, 郭亚雄, 等. Nb对激光熔覆MoFeCrTiWAlNb x高熔点高熵合金组织与性能的影响[J]. 功能材料, 2017, 48(12): 12214 − 12220.

    Shang Xiaojuan, Liu Qibin, Guo Yaxiong, et al. Effect of Nb on microstructure and properties of laser cladding MoFeCrTiWAlNbx high melting point high entropy alloy[J]. Journal of Functional Materials, 2017, 48(12): 12214 − 12220.
    Li X, Feng Y, Liu B, et al. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high- entropy alloy coatings prepared by laser cladding[J]. Journal of Alloys and Compounds, 2019, 788: 454 − 461.
    赵洪运, 刘甲坤, 骆宗安, 等. 焊接热输入对800 MPa超级钢焊接接头组织性能的影响[J]. 焊接学报, 2011, 32(8): 5 − 8.

    Zhao Hongyun, Liu Jiakun, Luo Zongan, et al. Effects of welding heat input on structure and properties of 800 MPa ultra fine grained steel welding joints[J]. Transactions of the China Welding Institution, 2011, 32(8): 5 − 8.
    Ren Fangcheng, Yao Jiaohua, Liu Rong, et al. Effect of Nb on microstructure and wear resistance of low-carbon stellite alloy laser cladding coating[J]. Heat Treatment of Metals, 2016, 41(10): 15 − 20.
    赵红艳. 高熵固溶体合金的相组成和力学性能研究[D]. 大连: 大连理工大学, 2015.

    Zhao Hongyan. The study of phase component and mechanical performance in solid solutions high entropy alloys[D]. Dalian: Dalian University of Technology, 2015.
    Cheng J B, Liang X B, Xu B S. Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings[J]. Surface and Coatings Technology, 2014, 240: 184 − 190. doi: 10.1016/j.surfcoat.2013.12.053
    Wu C L, Zhang S, Zhang C H, et al. Phase evolution and properties in laser surface alloying of FeCoCrAlCuNi x high-entropy alloy on copper substrate[J]. Surface and Coatings Technology, 2017, 315: 368 − 376. doi: 10.1016/j.surfcoat.2017.02.068
    张俊旺, 王文先, 黄延平, 等. 奥氏体不锈钢焊缝金属的电化学腐蚀性能[J]. 焊接学报, 2007, 28(2): 103 − 107. doi: 10.3321/j.issn:0253-360X.2007.02.027

    Zhang Junwang, Wang Wenxian, Huang Yanping, et al. Electrochemical corrosion properties for weld metal of austenitic stainless steel[J]. Transactions of the China Welding Institution, 2007, 28(2): 103 − 107. doi: 10.3321/j.issn:0253-360X.2007.02.027
    Guo Y, Shang X, Liu Q. Microstructure and properties of in-situ TiN reinforced laser cladding CoCr2FeNiTix high-entropy alloy composite coatings[J]. Surface and Coatings Technology, 2018, 344(25): 353 − 358.
    贾强. CrFeCoNiTix高熵合金力学性能及耐腐蚀性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2015.

    Jia Qiang. CrFeCoNiTix high entropy alloy mechanical properties and corrosion resistance research[D]. Haerbin: Harbin University of Science and Technology, 2015.
    Chen Y Y, Duval T, Hung U D, et al. Microstructure and electrochemical properties of high entropy alloys-a comparison with type-304 stainless steel[J]. Corrosion Science, 2005, 47(9): 2257 − 2279. doi: 10.1016/j.corsci.2004.11.008
  • Related Articles

    [1]ZHANG Wei, LIU Feng, LI Xiangbo, CHENG Xudong, SU Yan, SHAO Gangqin. Influence of weld reinforcements on corrosion behavior of Cu-Ni alloy pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 115-121. DOI: 10.12073/j.hjxb.20220302001
    [2]FENG Daochen, ZHENG Wenjian, GAO Guoben, ZHOU Zhou, HE Yanming, YANG Jianguo. Corrosion resistance of AlCoCrFeNi2.1 high entropy alloy welded joint by electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 43-48. DOI: 10.12073/j.hjxb.20220101006
    [3]LI Congwei, SHAO Changlei, ZHU Jialei, CAI Zhihai, MEI Le, JIAO Xiangdong. Microstructure and properties of 304 stainless steel coating by local dry underwater laser cladding with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 67-74. DOI: 10.12073/j.hjxb.20210305004
    [4]LEI Yucheng, ZHANG Weiwei, LIU Dan, LI Xin. Effect of helium ion irradiation on microstructure and properties of 316L steel weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 48-53. DOI: 10.12073/j.hjxb.20210423002
    [5]SU Yunhai, DENG Yue, DOU Lijie, LIANG Xuewei. Effect of Mo content on microstructure and properties of FeAlCuCrNiMox alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 111-115,160. DOI: 10.12073/j.hjxb.2019400245
    [6]JING Hongyang, SHANG Jin, XU Lianyong, HAN Yongdian. Corrosion failure analysis for heat exchanger[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 1-4.
    [7]LU Quanbin, LONG Weimin, WANG Xin, DU Quanbin. Influence of trace Sc on intergranular corrosion properties of Al-Mg-Mn-Cr-Ti alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 97-100.
    [8]DONG Chunlin, DONG Jihong, ZHAO Huaxia, LUAN Guohong, FU Ruidong. Microstructures and electrochemical performance of 6082-T6 aluminum alloy welds prepared by bobbin friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 5-9.
    [9]ZHAO Yadong, SHEN Changbin, LIU Shuhua, GE Jiping, Huang Zhenhui. Electrochemical corrosion behavior of friction stir welding weld of 6082 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 105-107.
    [10]ZHANG Junwang, WANG Wenxian, HUANG Yanping, WANG Baodong, LIU Xu. Electrochemical corrosion properties for weld metal of austenitic stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 103-107.

Catalog

    Article views (652) PDF downloads (37) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return