Advanced Search
TAO Wang, WANG Xian, CHEN Ao, LI Liqun. Stress field and mechanical properties of laser metal deposited aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 62-66. DOI: 10.12073/j.hjxb.20191013002
Citation: TAO Wang, WANG Xian, CHEN Ao, LI Liqun. Stress field and mechanical properties of laser metal deposited aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 62-66. DOI: 10.12073/j.hjxb.20191013002

Stress field and mechanical properties of laser metal deposited aluminum alloys

More Information
  • Received Date: October 12, 2019
  • Available Online: July 26, 2020
  • Through grooves in the 6 mm thickness ZL114A aluminum plate were repaired by the laser metal deposition process, and the filling powder was AlSi10Mg powder. In order to determine the scanning strategy, the residual stress generated with different scanning strategies was calculated by numerical simulation. The process of laser melting deposition was realized by the path scanning method with the smallest residual stress, and the influence of defects and heat input on the mechanical properties of the test workpiece was further studied. The results show that the layer-by-layer scanning strategy generated less the residual stress compared with the parallel scanning strategy. In terms of mechanical properties, by optimizing the process, the tensile strength of the tensile specimens has reached 268 MPa, which is 89% of the tensile strength of the substrate. Besides, the fracture location of the specimen was not along the interface between the deposition area and the substrate, but in the overlapping area between the deposition tracks.
  • Chang Yunfeng, Lei Zhen, Wang Xuyou, et al. Characteristic of laser-MIG hybrid welding with filling additional cold wire for aluminum alloy[J]. China Welding, 2018, 27(3): 35 − 41.
    汪汉萍, 杨晓益, 陈辉, 等. 130 mm铝合金扫描激光填丝焊接头微区组织和性能[J]. 焊接学报, 2019, 40(11): 87 − 92. doi: 10.12073/j.hjxb.2019400293

    Wang Hanping, Yang Xiaoyi, Chen Hui, et al. Micro-area organization and performance of 130 mm Al alloy scanning laser filler wire welded joint[J]. Transactions of the China welding institution, 2019, 40(11): 87 − 92. doi: 10.12073/j.hjxb.2019400293
    Lei Zhen, Li Xiaoyu, Xu Fujia, et al. Laser-pulsed MIG hybrid welding technology of A6N01S aluminum alloy[J]. China Welding, 2017, 26(4): 10 − 19.
    Deutsch M G, Punkari A, Weckman D C, et al. Weldability of 1.6 mm thick aluminium alloy 5182 sheet by single and dual beam ND: YAG laser welding[J]. Science and Technology of Welding and Joining, 2003, 8(4): 246 − 256. doi: 10.1179/136217103225005499
    Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment[J]. Materials Science & Engineering A, 2016, 667: 139 − 146.
    Ding Y, Muniz-lerma J, Trask M, et al. Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys[J]. MRS Bulletin, 2017, 41(10): 745 − 751.
    Chen B, Yao Y Z, Song X G, et al. Microstructure and mechanical properties of additive manufacturing AlSi10Mg alloy using direct metal deposition[J]. Ferroelectrics, 2018, 523(1): 153 − 166. doi: 10.1080/00150193.2018.1392147
    Javidani M, Arreguin-zavala J, Danovitch J, et al. Additive manufacturing of AlSi10Mg alloy using direct energy deposition: microstructure and hardness characterization[J]. Journal of Thermal Spray Technology, 2017, 26(4): 587 − 597. doi: 10.1007/s11666-016-0495-4
    刘昊, 虞钢, 何秀丽, 等. 送粉式激光熔覆中瞬态温度场与几何形貌的三维数值模拟[J]. 中国激光, 2013, 40(12): 78 − 85.

    Liu Hao, Yu Gang, He Xiuli, et al. Three-dimensional numerical simulation of transient temperature field and coating geometry in powder feeding laser cladding[J]. Chinese Journal of Lasers, 2013, 40(12): 78 − 85.
    董敢. 同轴送粉激光熔覆熔池数值模拟[D]. 长沙: 湖南大学, 2013.

    Dong Gan. Numerical simulation of molten pool in coaxial powder-feed laser cladding[D]. Changsha : Hunan University, 2013.
  • Related Articles

    [1]XUE Jiaxiang, JIANG Chengfeng, ZHANG Xiaoli, ZHU Xiaojun, ZHU Qiang. Research on unified adjustment of pulsed MIG welding parameters based on least squares method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 75-78.
    [2]DUAN Bin, ZHANG Chenghui, SUN Tongjing, ZHANG Guangxian, GUO Min. Modeling and simulation of pulsed welding inverter[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 57-60,64.
    [3]WEI Zhonghua, LONG Peng, CHEN Xiaofeng, XUE Jiaxiang. Application of control parameter in sinusoid modulation pulsed MIG welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 9-12.
    [4]LEI Zhen, QIN Guoliang, WANG Xuyou, LIN Shangyang. Braze-welding for dissimilar metals between copper and steel by Nd:YAG laser-plused MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 18-20,25.
    [5]WANG Wei-ming, LIU Jia, MA De, YIN Shu-yan. Full digital control system based on DSP for pulsed GMAW inverter[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 35-38.
    [6]LEI Yu cheng, LIU Wei, CHENG Xiao nong. BP Neural Network Predicting Model for Aluminium Alloy Keyhole Plasma Arc Welding in Vertical Position[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (6): 41-43.
    [7]YANG Yun-qiang, LI Jun-yue, HU Sheng-gang, LIU Gang, LI Huan. The Characteristic Spectral Information of Droplet Transfer in Pulsed MIG Welding and It's Applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 36-38.
    [8]Jiao Xiangdong, Pan Jiluan, Zhang Hua. Development of Pulsed Square Wave AC MIG/TIG Welding Power Source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (1): 56-61.
    [9]Jiang Weiyan, Zhang Jiuhai, Zhao Chongyi. Behaviors of metal transfer in pulsed MIG(MAG) welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (1): 50-58.
    [10]Xiao Jieguang, Liu Chunwu, Liu Zhu, Zhu Qi. RESEARCHES ON PULSE TIG POWER INVERTER[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (2): 96-102.
  • Cited by

    Periodical cited type(3)

    1. 田瑞,江哲,刘俊,刘伟清,池元清,张永康. 纳米改性Al-Zn-Mg-Cu合金电弧熔丝增材成形工艺及组织和性能. 焊接学报. 2024(08): 110-120 . 本站查看
    2. 郭克星. 铝合金激光焊接技术研究进展. 热处理. 2024(06): 1-7 .
    3. 王龙权,尹天天,张岩,宋闽,张基隆,曲畅. 7xxx高强铝合金熔化焊研究进展. 焊接. 2023(08): 44-54 .

    Other cited types(7)

Catalog

    Article views (538) PDF downloads (26) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return