Advanced Search
XIE Yujiang, YANG Yule, CHI Changtai. Microstructures and mechanical properties of laser metal deposited 24CrNiMo steel in different atmospheres[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 19-24. DOI: 10.12073/j.hjxb.20190905001
Citation: XIE Yujiang, YANG Yule, CHI Changtai. Microstructures and mechanical properties of laser metal deposited 24CrNiMo steel in different atmospheres[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 19-24. DOI: 10.12073/j.hjxb.20190905001

Microstructures and mechanical properties of laser metal deposited 24CrNiMo steel in different atmospheres

More Information
  • Received Date: September 04, 2019
  • Available Online: September 26, 2020
  • Using the laser metal deposition (LMD) technology, 24CrNiMo alloy samples were prepared in Ar and air atmosphere, respectively. Optical microscope, scanning electron microscope, oxygen nitrogen hydrogen analyzer, microhardness tester, room temperature tensile test and impact test were used to investigate the microstructure and mechanical properties of the alloy prepared. The results showed that the morphology of the deposited solidified structure in Ar and air atmosphere were basically same, both were epitaxially grown columnar crystals, which changed into cell dendrites with decrease in the ratio of the interface temperature gradient (G) to the interface growth rate (v). The microstructures were all granular bainite. Heat accumulation temperature affected the size and distribution. The size and distribution of the particles were irregular because that the accumulated temperature in the Ar atmosphere was higher, while the shape of bainite in the air atmosphere was short rod-shaped and distributed in a certain direction; the hardness and tensile strength of the sample in the air atmosphere were slightly higher than those in the Ar atmosphere, but the plasticity and impact toughness of the former were slightly lower, mainly due to the presence of more oxide inclusions in the sample in the air.
  • Gao W, Zhang Y, Chen Y, et al. The status, challenges, and future of additive manufacturing in engineering[J]. Computer-Aided Design, 2015, 69: 65 − 89. doi: 10.1016/j.cad.2015.04.001
    Zhang Y, Wu L, Guo X, et al. Additive manufacturing of metallic materials: a review[J]. Journal of Materials Engineering and Performance, 2018, 27(1): 1 − 13. doi: 10.1007/s11665-017-2747-y
    Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117: 371 − 392. doi: 10.1016/j.actamat.2016.07.019
    Liu J, Yu H, Chen C. Research progress of laser cladding self-fluxing alloy coatings on titanium alloys[J]. China Welding, 2017, 26(2): 45 − 51.
    林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学: 信息科学, 2015, 45(9): 1111 − 1126. doi: 10.1360/N112014-00245

    Lin Xin, Huang Weidong. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica Informationis, 2015, 45(9): 1111 − 1126. doi: 10.1360/N112014-00245
    Shi C, Chen S, Xia Q, et al. Preparation and printability of 24CrNiMo alloy steel powder for selective laser melting fabricating brake disc[J]. Powder Metallurgy, 2018, 61(1): 73 − 80. doi: 10.1080/00325899.2017.1396019
    Cao L, Chen S, Wei M, et al. Effect of laser energy density on defects behavior of direct laser depositing 24CrNiMo alloy steel[J]. Optics and Laser Technology, 2019, 111: 541 − 553. doi: 10.1016/j.optlastec.2018.10.025
    刘奋成, 林鑫, 杨高林, 等. 不同气氛激光立体成形镍基高温合金Inconel 718的显微组织和力学性能[J]. 金属学报, 2010, 46(9): 1047 − 1054. doi: 10.3724/SP.J.1037.2010.00046

    Liu Fencheng, Lin Xin, Yang Gaolin, et al. Microstructures and mechanical properties of laser solid formed nickle base superalloy Inconel 718 prepared in different atmospheres[J]. Acta Metallurgica Sinica, 2010, 46(9): 1047 − 1054. doi: 10.3724/SP.J.1037.2010.00046
    Vilaro T, Colin C, Bartout J. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting[J]. Metallurgical and Materials Transactions A, 2011, 42A: 3190 − 3199.
    林鑫, 杨海欧, 陈静, 等. 激光快速成形过程中316L不锈钢显微组织的演变[J]. 金属学报, 2006, 42(4): 361 − 368. doi: 10.3321/j.issn:0412-1961.2006.04.005

    Lin Xin, Yang Haiou, Chen Jing, et al. Microstructure evolution of 316L stainless steel during laser rapid forming[J]. Acta Metallurgica Sinica, 2006, 42(4): 361 − 368. doi: 10.3321/j.issn:0412-1961.2006.04.005
    Gao Z. Metallurgical modeling of microcrack repairment during welding nonferrous materials: non-equilibrium grain boundary segregation (Ⅱ)[J]. China Welding, 2015, 24(3): 39 − 50.
    徐锦岗, 陈勇, 陈辉, 等. 工艺参数对H13钢激光选区熔化成形缺陷的影响[J]. 激光与光电子学进展, 2018, 55(04): 283 − 289.

    Xu Jingang, Chen Yong, Chen Hui, et al. Influence of process parameters on forming defects of H13 steel processed by selective laser melting[J]. Laser & Optoelectronics Progress, 2018, 55(04): 283 − 289.
  • Cited by

    Periodical cited type(3)

    1. 于天阳,马国政,郭伟玲,何鹏飞,黄艳斐,刘明,王海斗. 冷喷涂不同陶瓷含量Cu-Ti_3SiC_2复合涂层的微观组织及性能研究. 材料导报. 2022(07): 109-114 .
    2. 肖棚,高杰维,刘里根,韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价. 材料导报. 2022(07): 115-121 .
    3. 鲁明远,韩保红,赫万恒,赵忠民. TiB_2基陶瓷/42CrMo合金层状梯度材料力学测试与结构设计. 焊接学报. 2021(09): 42-48+73+99 . 本站查看

    Other cited types(3)

Catalog

    Article views (320) PDF downloads (14) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return