Advanced Search
FAN Ding, HU Ande, HUANG Jiankang, XU Zhenya, XU Xu. X-ray image defect recognition method for pipe weld based on improved convolutional neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 7-11. DOI: 10.12073/j.hjxb.20190703002
Citation: FAN Ding, HU Ande, HUANG Jiankang, XU Zhenya, XU Xu. X-ray image defect recognition method for pipe weld based on improved convolutional neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 7-11. DOI: 10.12073/j.hjxb.20190703002

X-ray image defect recognition method for pipe weld based on improved convolutional neural network

More Information
  • Received Date: July 02, 2019
  • Available Online: July 12, 2020
  • When convolution neural network (CNN) is applied to weld flaw detection image recognition, the target area is small, the local information is redundant, and the hard saturation region of activation function is less than zero, which makes the model sensitive to input change and difficult to train the network parameters. The super pixel segmentation algorithm (SLIC) and the improved ELU activation function are used to construct CNN model for weld flaw detection image defect recognition. First, the ELU activation function is used in the CNN model to generate better robustness to the input noise when the response gradient disappears, At the same time, the SLIC algorithm is used to deal with the pixels of the image, which increases the proportion of the region of interest in the weld flaw detection image, reduces the local redundant information, and improves the feature extraction ability of the model in the training process. Through the extraction of the region of interest of weld flaw detection image and the establishment of the CNN model described in this paper, the results show that the proposed method has better performance than the traditional convolution neural network in feature extraction, training time and recognition accuracy of weld flaw detection image.
  • 张志芬, 杨哲, 任文静, 等. 电弧光谱深度挖掘下的铝合金焊接过程状态检测[J]. 焊接学报, 2019, 40(1): 19 − 25.

    Zhang Zhifen, Yang Zhe, Ren Wenjing, et al. Condition detection in Al alloy welding process based on deep mining of arc spectrum[J]. Transactions of the China Welding Institution, 2019, 40(1): 19 − 25.
    Min Xiangjun. The development and design of the repair welding procedure of the thick wall duplex stainless steel piping[J]. China Welding, 2017, 26(1): 60 − 64.
    孙怡, 孙洪雨, 白鹏, 等. X射线焊缝图像中缺陷的实时检测方法[J]. 焊接学报, 2004, 25(2): 115 − 118. doi: 10.3321/j.issn:0253-360X.2004.02.029

    Sun Yi, Song Hongyu, Bai Peng, et al. Real-time automatic detection of weld defects in X-ray images[J]. Transactions of the China Welding Institution, 2004, 25(2): 115 − 118. doi: 10.3321/j.issn:0253-360X.2004.02.029
    Yang Zhenzhen, Kuang Nan, Fan Lu, et al. Review of image classification algorithms based on convolutional neural networks[J]. Journal of Signal Processing, 2018, 34(12): 84 − 99.
    周飞燕, 金林鹏, 董军. 卷积神经网络综述[J]. 计算机学报, 2017, 40(6): 1229 − 1251. doi: 10.11897/SP.J.1016.2017.01229

    Zhou Feiyan, Jin Linpeng, Dong Jun. Review of image classification algorithms based on convolutional neural networks[J]. Chinese Journal of Computers, 2017, 40(6): 1229 − 1251. doi: 10.11897/SP.J.1016.2017.01229
    Boureau Y, Roux N L, Bach F, et al. Ask the locals: multi-way local pooling for image recognition[C]// IEEE International Conference on Computer Vision. IEEE, 2011: 2651-2658.
    Wu X, He R, Sun Z, et al. A light CNN for deep face representation with noisy labels[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(11): 1 − 11. doi: 10.1109/TIFS.2018.2879134
    Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks[J]. Computer Science, 2018, 77: 354 − 377.
    Achanta R, Shaji A, Smith K, et al. SLIC superpixels comparedto state of the art superpixel methods[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(11): 2274 − 2282.
    Singh R, Om H. Newborn face recognition using deep convolutional neural network[J]. Multimedia Tools & Applications, 2017, 76(18): 1 − 11.
    Mery D, Riffo V, Zscherpel U, et al. The database of X-ray images for nondestructive testing[J]. Journal of Nondestructive Evaluation, 2015, 34(4): 1 − 12.
  • Related Articles

    [1]DU Yongpeng, GUO Ning, WU Chenghao, HUANG Lu, ZHANG Xin, FENG Jicai. Study on the application of the weld reinforcement variation coefficient in underwater wet welding quality evaluation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 24-27, 32. DOI: 10.12073/j.hjxb.20190917001
    [2]LI Hexi, HAN Xinle, FANG Zaojun. A visual model of welding robot based on CNN deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 154-160. DOI: 10.12073/j.hjxb.2019400060
    [3]GAO Yanfeng, WU Dong. Effects of lateral wind on the rotating arc sensing and the weld seam tracking in a horizontal welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 36-40. DOI: 10.12073/j.hjxb.2018390091
    [4]ZHANG Yanxi, GAO Xiangdong. Morphology of molten pool based on shadow during highpower laser deep penetration welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 27-30.
    [5]GONG Yefei, LI Xinde, DAI Xianzhong, CHENG Xianggen. A weld robot off-line programming system integrated with virtual structured-light sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 17-20.
    [6]YIN Ziqiang, ZHANG Guangjun, GAO Hongming, WU Lin. Calibration approach for structured-light sensor in remanufacture based on welding robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (12): 57-60.
    [7]XIAO Xinyuan, SHI Yonghua, WANG Guorong, Li Hexi. Robotic underwater weld seam tracking based on visual sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 33-36.
    [8]WANG Hong-ying, LIU Shou-yi, LIANG Xue-feng, LI Zhi-jun. Acqusition and control of welding quality signals in laser welding of Mg alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 101-103.
    [9]WANG Jun-bo, SUN Zhen-guo, CHEN Qiang, JI Meng, JIANG Li-pei, JIAO Xiang-dong, XUE Long. CCD Sensor Assisted Weld Seam Tracing Method for Spherical Tank Welding Robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (2): 31-34.
    [10]Li Yan, Shao Junbao, Wu Lin, Lin Tao. A method of robotic welding seam tracking with 3D vision information[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (2): 132-136.
  • Cited by

    Periodical cited type(5)

    1. 王振民,宋哲龙,迟鹏,廖海鹏,张芩. 类人机器人焊接技术研究现状与展望. 机电工程技术. 2025(04): 1-13 .
    2. 陈廷艳,彭一航,董碧云. 不同励磁方式下微间隙焊缝磁光图像的获取与研究. 科技视界. 2025(04): 49-52 .
    3. 王权,程豪,蒋世权. 面向智慧农业的焊接机器人可视化误差补偿系统设计. 现代农业装备. 2025(02): 81-85 .
    4. 李玉帆,原鹏飞. 基于焊接机器人的控制系统设计及研究. 自动化应用. 2025(09): 38-40+43 .
    5. 刘少意,严文荣,陈振明,乔家伟,杨高阳,张新明,王绿原,王克鸿. 机器人智能化焊接技术发展综述. 金属加工(热加工). 2025(06): 1-12 .

    Other cited types(0)

Catalog

    Article views (721) PDF downloads (77) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return