Advanced Search
CHEN Guoqing, SHU Xi, ZHANG Binggang, FENG Jicai. State-of-arts of electron beam freeform fabrication technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 123-128. DOI: 10.12073/j.hjxb.2018390214
Citation: CHEN Guoqing, SHU Xi, ZHANG Binggang, FENG Jicai. State-of-arts of electron beam freeform fabrication technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 123-128. DOI: 10.12073/j.hjxb.2018390214

State-of-arts of electron beam freeform fabrication technology

More Information
  • Received Date: March 22, 2017
  • With the development of additive manufacturing (AM) technology, a variety of AM technologies, such as arc, laser and electron beam AM technologies, have been extensively researched in their respective sectors. The characteristics of electron beam freeform fabrication (EBF3) were summarized in this paper. The research on EBF3 technology and the latest achievements on the equipment and technique of EBF3 in domestic and foreign were introduced. Research work of EBF3 which should be launched was analyzed. Finally, EBF3 technology should be developed along refractory metals and composite materials, preparation of gradient materials and complex component additive manufacturing was prospected.
  • Gibson I, Rosen D W, Stucker B. Additive manufacturing technologies[M]. New York:Springer, 2010.
    Kruth J P, Leu M C, Nakagawa T. Progress in additive manufacturing and rapid prototyping[J]. CIRP Annals-Manufacturing Technology, 1998, 47(2):525-540.
    卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4):1-4 Lu Bingheng, Li Dichen. Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 2013, 42(4):1-4
    Almeida P S, Williams S. Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer (CMT)[C]//Proceedings of the Twenty-first Annual International Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin, TX, USA. 2010:25-36
    Kazanas P, Deherkar P, Almeida P, et al. Fabrication of geometrical features using wire and arc additive manufacture[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2012, 226(6):1042-1051.
    林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学, 2015, 45(9):1111-1126 Lin Xin, Huang Weidong. Laser additive manufacturing of high-performance metal components[J]. Science China:Information Sciences, 2015, 45(9):1111-1126
    Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9):3303-3312.
    黄瑜, 贾文鹏, 汤慧萍, 等. Ti600合金的电子束快速成形[J]. 稀有金属材料与工程, 2012, 41(11):2000-2004 Huang Yu, Jia Wenpeng, Tang Huiping, et al. Electronic beam melting of Ti600 titanium alloy[J]. Rare Metal Materials and Engineering, 2012, 41(11):2000-2004
    汤慧萍, 王建, 逯圣路, 等. 电子束选区熔化成形技术研究进展[J]. 中国材料进展, 2015, 34(3):225-235 Tang Huiping, Wang Jian, Lu Shenglu, et al. Research progress in selective electron beam melting[J]. Materials China, 2015, 34(3):225-235
    陈济轮, 杨洁, 于海静. 国外高能束增材制造技术应用现状与最新发展[J]. 航天制造技术, 2014(4):1-4, 10 Chen Jilun, Yang Jie, Yu Haijing. The abroad application and latest development of high-energy beam additive manufacturing technology[J]. Aerospace Manufacturing Technology, 2014(4):1-4, 10
    齐海波, 林峰, 颜永年, 等. 电子束在快速制造领域的应用[J]. 新技术新工艺, 2004(11):54-56 Qi Haibo, Lin Feng, Yan Yongnian, et al. The application of electron beam in rapid manufacturing[J]. New Technology & New Process, 2004(11):54-56
    Watson J K, Taminger K M B, Hafley R A, et al. Development of a prototype low-voltage electron beam freeform fabrication system[C]//The 13th Solid Freeform Fabrication Symposium. Austin:2002.
    Taminger K M B, Hafley R A, Dicus D L. Solid freeform fabrication:an enabling technology for future space missions[C]//Keynote Lecture For 2002 International Conference On Metal Powder Deposition For Rapid. Virginia. 2002.
    杨春利, 林三宝. 电弧焊基础[M]. 哈尔滨:哈尔滨工业大学出版社, 2003.
    刘春飞, 张益坤. 电子束焊接技术发展历史, 现状及展望(Ⅰ)[J]. 航天制造技术, 2003, 1:33-36 Liu Chunfei, Zhang Yikun. Development history, state-of-arts and prospect of electron beam welding technology(I)[J]. Aerospace Manufacturing Technology, 2003, 1:33-36
    Stecker S, Lachenberg K W, Wang H, et al. Advanced electron beam free form fabrication methods & technology[J]. Session, 2006, 2:35-46.
    冯吉才, 王廷, 张秉刚, 等. 异种材料真空电子束焊接研究现状分析[J]. 焊接学报, 2009, 30(10):108-112 Feng Jicai, Wang Ting, Zhang Binggang, et al. Research status analysis of electron beam welding for joining of dissimilar materials[J]. Transactions of the China Welding Institution, 2009, 30(10):108-112
    陈哲源, 锁红波, 李晋炜. 电子束熔丝沉积快速制造成型技术与组织特征[J]. 航天制造技术, 2010(1):40-43 Chen Zheyuan, Suo Hongbo, Li Jinwei. The forming character of electron beam freeform fabrication[J]. Aerospace Manufacturing Technology, 2010(1):40-43
    Taminger K M B, Hafley R A. Characterization of 2219 aluminum produced by electron beam freeform fabrication[C]//13th Solid Freeform Fabrication Symposium. Austin:2002.
    Taminger K M B, Hafley R A. Electron beam freeform fabrication:a rapid metal deposition process[C]//3rd Annual Automotive Composites Conference. Virginia. 2003.
    Taminger K M B, Hafley R A, Fahringer D T, et al. Effect of surface treatments on electron beam freeform fabricated aluminum structures[C]//Solid Freeform Fabrication Symposium Proceedings. 2004.
    Taminger K M B, Hafley R A, Domack M S. Evolution and control of 2219 aluminium microstructural features through electron beam freeform fabrication[C]//Materials science forum, 2006, 519:1297-1302.
    Taminger K M B, Hafley R A. Electron Beam Freeform Fabrication in the Space Environment[C]//45th AIAA Aerospace Sciences Meeting And Exhibit. Reno. 2007.
    Wanjara P, Brochu M, Jahazi M. Electron beam freeforming of stainless steel using solid wire feed[J]. Materials & Design, 2007, 28(8):2278-2286.
    Wanjara P, Brochu M, Girard S, et al. Electron beam freeforming on type 321 stainless steel using BNi-2 brazing paste[J]. Materials Science and Technology, 2005, 21(5):613-618.
    Matz J E, Eagar T W. Carbide formation in alloy 718 during electron-beam solid freeform fabrication[J]. Metallurgical and Materials Transactions A, 2002, 33(8):2559-2567.
    Bush R W, Brice C A. Elevated temperature characterization of electron beam freeform fabricated Ti-6Al-4V and dispersion strengthened Ti-8Al-1Er[J]. Materials Science and Engineering:A, 2012, 554:12-21.
    Wallace T A, Bey K S, Taminger K M, et al. A design of experiments approach defining the relationships between processing and microstructure for Ti-6Al-4V[R]. National Aeronautics And Space Administration Hampton Va Langley Research Center, 2004.
    陈彬斌. 电子束熔丝沉积快速成形传热与流动行为研究[D]. 武汉:华中科技大学, 2013.
    Tang Q, Pang S, Chen B, et al. A three dimensional transient model for heat transfer and fluid flow of weld pool during electron beam freeform fabrication of Ti-6-Al-4-V alloy[J]. International Journal of Heat and Mass Transfer, 2014, 78:203-215.
    Yan W, Yue Z, Zhang J. Study on the residual stress and warping of stiffened panel produced by electron beam freeform fabrication[J]. Materials & Design, 2016, 89:1205-1212.
    赵健. 电子束填丝焊接熔化过渡行为及铜/钢焊接研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
  • Related Articles

    [1]JIANG Shun, ZHAO Haiming, ZHAO Xianqiong, LI Dongsheng, YANG Lunlei. Multi-objective optimization of laser cladding parameters for 42CrMo surface based on GA-BP and NSGA-II. Algorithms[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240602001
    [2]YIN Chi, GUO Yonghuan, FAN Xiying, ZHU Zhiwei, SONG Haoxuan, ZHANG Liang. Multi-objective optimization of aluminum copper laser welding parameters based on BKA-GBRT and MOSPO[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 140-144. DOI: 10.12073/j.hjxb.20240721002
    [3]WANG Tianqi, MENG Kaiquan, WANG Chuanrui. Prediction and optimization of multi-layer and multi-pass welding process parameters based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 29-37. DOI: 10.12073/j.hjxb.20230523001
    [4]ZHUO Wenbo, TAN Guobi, CHEN Qiuren, HOU Zehong, WANG Xianhui, HAN Weijian, HUANG Li. Multi-objective optimization of resistance spot welding process parameters of ultra-high strength steel based on agent model and NSGA-Ⅱ[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 20-25. DOI: 10.12073/j.hjxb.20230317002
    [5]CHEN Xinghui, ZHANG Hongshen. Process parameters optimization of 5083 aluminum alloy FSW joint based on principal component analysis and grey correlation analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 62-69. DOI: 10.12073/j.hjxb.20220623001
    [6]LI Jiahao, SHU Linsen, HENG Zhao, WU Han. Multi-objective optimization of laser cladding parameters based on PCA and RSM-DE algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 67-73. DOI: 10.12073/j.hjxb.20220310001
    [7]ZHOU Wenting, SI Yupeng, HE Hongzhou, WANG Rongjie. Design of reflow oven furnace temperature based on quantum multi-objective optimization algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 85-91. DOI: 10.12073/j.hjxb.20210508001
    [8]LV Xiaoqing, WANG Xu, XU Lianyong, JING Hongyang, HAN Yongdian. Multi-objective optimization of MAG process parameters based on ensemble models[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 6-11. DOI: 10.12073/j.hjxb.20190629001
    [9]SHU Fuhua. Friction welding technological parameter optimization based on LSSVM and AFSA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 104-108.
    [10]LIU Xue-mei, YAO Jun-shan, ZHANG Yan-hua. Optimization for friction surfacing parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 99-102.

Catalog

    Article views (2106) PDF downloads (243) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return