Advanced Search
ZHAO Dawei1, LIANG Dongjie2, WANG Yuanxun3. Research on process parameters optimization of small scale resistance spot welding via regression analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 79-83. DOI: 10.12073/j.hjxb.2018390100
Citation: ZHAO Dawei1, LIANG Dongjie2, WANG Yuanxun3. Research on process parameters optimization of small scale resistance spot welding via regression analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 79-83. DOI: 10.12073/j.hjxb.2018390100

Research on process parameters optimization of small scale resistance spot welding via regression analysis

More Information
  • Received Date: October 08, 2016
  • Central composite experimental design was used for the thickness of 0.4 mm TC2 titanium alloy in order to optimize the small scale spot welded joint quality. The welding current, electrode force and welding time were picked out as the process parameters and the nugget size, peak load, tensile shear displacement and failure energy were weighted into a welding quality comprehensive index based on entropy measurement method. The mathematical model between the welding quality comprehensive index and process parameters was obtained using regression analysis. The interaction effects of the welding parameters on welding quality were explored. The optimal combination of welding process parameters was achieved by using hill climbing method. The results of validation experiments showed that this study could effectively forecast and optimize the welding quality for the TC2 titanium alloy with the thickness of 0.4 mm.
  • 孙晓屿, 黄 雷, 王武荣, 等. DP780双相钢电阻点焊的数值模拟及试验验证[J]. 焊接学报, 2016, 37(4): 85-88.Sun Xiaoyu, Huang Lei, Wang Wurong, et al. Numerical simulation and experimental verification of resistance spot welding with DP780 dual-phase steel[J]. Transactions of the China Welding Institution, 2016, 37(4): 85-88.[2] 姚 杞, 李 洋, 罗 震, 等. 永磁体磁场对铝合金电阻点焊力学性能及微观组织的影响[J]. 焊接学报, 2016, 37(4): 52-56.Yao Qi, Li Yang, Luo Zhen, et al. Impact of external magnetic field generated by permanent magnet on mechanical property and microstructure of aluminum alloy resistance spot weld[J]. Transactions of the China Welding Institution, 2016, 37(4): 52-56.[3] Pashazadeh H, Gheisari Y, Hamedi M. Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm[J]. Journal of Intelligent Manufacturing, 2016, 27(3): 549-559.[4] Muhammad N, Manurung Y H P, Jaafar R, et al. Model development for quality features of resistance spot welding using multi-objective Taguchi method and response surface methodology[J]. Journal of Intelligent Manufacturing, 2013, 24(6): 1175-1183.[5] Ashadudzzaman M, Choi I D, Kim J W, et al. Effect of initial welding current for adaptive control and its optimization to secure proper weld properties in resistance spot welding[J]. Journal of Welding and Joining, 2015, 33(6): 13-20.[6] Thakur A G, Nandedkar V M. Optimization of the resistance spot welding process of galvanized steel sheet using the Taguchi method[J]. Arabian Journal for Science and Engineering, 2014, 39(2): 1171-1176.[7] 林 健, 雷永平, 赵海燕, 等. 微连接接头在热疲劳过程中的破坏规律[J]. 焊接学报, 2009, 30(11): 65-68.Lin Jian, Lei Yongping, Zhao Haiyan, et al. Failure of soldered joint during thermal fatigue test[J]. Transactions of the China Welding Institution, 2009, 30(11): 65-68.[8] Fukumoto S, Fujiwara K,Toji S, et al. Small-scale resistance spot welding of austenitic stainless steels[J]. Materials Science and Engineering: A, 2008, 492(1): 243-249.[9] Chen F, Tong G Q, Ma Z, et al. The effects of welding parameters on the small scale resistance spot weldability of Ti-1Al-1Mn thin foils[J]. Materials & Design, 2016, 102: 174-185.[10] Chen Y C, Tseng K H, Cheng Y S. Electrode displacement and dynamic resistance during small-scale resistance spot welding[J]. Advanced Science Letters, 2012, 11(1): 72-79.[11] Banh Q N, Shiou F J. Determination of optimal small ball-burnishing parameters for both surface roughness and superficial hardness improvement of STAVAX[J]. Arabian Journal for Science and Engineering, 2016, 41(2): 639-652.
  • Related Articles

    [1]WEI Wei, MA Minze, ZHANG He, ZHAO Xingming, YANG Xinhua. Construction of the S-N curve evaluation model based on entropy for welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240909002
    [2]ZHOU Shaoze, GUO Shuo, CHEN Bingzhi, ZHANG Jun, ZHAO Wenzhong. Master S-N curve fitting and life prediction method for very high cycle fatigue of welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 76-82. DOI: 10.12073/j.hjxb.20211116002
    [3]LI Xiangwei, FANG Ji, ZHAO Shangchao. Master S-N curve fitting method of welded structure and software development[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 80-85. DOI: 10.12073/j.hjxb.20191018001
    [4]WANG Jujin, YANG Guangwu, YANG Bing, WANG Feng. S-N curve analysis of ring welding based on structural stress method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 63-68. DOI: 10.12073/j.hjxb.2019400210
    [5]WEI Guoqian, YUE Xudong, DANG Zhang, HE Yibin. S-N and IEFM combined fatigue life analysis for welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 23-27.
    [6]FAN Wenxue, CHEN Furong, XIE Ruijun, TANG Dafu. Analysis of vibration fatigue S-N curve on Q235B steel butt welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 39-42.
    [7]ZHU Guoren, CHEN Song, WANG Zhenbao. Optimization of transition in stainless steel welding joints S-N curve breaking point[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 35-38.
    [8]ZHAO Wenzhong, WEI Hongliang, FANG Ji, LI Jitao. The theory and application of the virtual fatigue test of welded structures based on the master S-N curve method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 75-78.
    [9]FAN Wenxue, CHEN Furong, XIE Ruijun, GAO Jian. Fatigue life prediction of transverse cross welded joint based on different S - N curve[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 69-72.
    [10]WANG Dong-po, WANG Ting, HUO Li-xing, ZHANG Yu-feng. Fatigue design curve of tubular joints treated by ultrasonic peening[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 34-38.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (803) PDF downloads (3) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return