Advanced Search
LI Bingru, ZHOU Jianping, XU Yan, BAO Yang. Three-dimensional numerical simulation and analysis of temperature field in metal welding deposition prototyping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 42-46. DOI: 10.12073/j.hjxb.2018390065
Citation: LI Bingru, ZHOU Jianping, XU Yan, BAO Yang. Three-dimensional numerical simulation and analysis of temperature field in metal welding deposition prototyping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 42-46. DOI: 10.12073/j.hjxb.2018390065

Three-dimensional numerical simulation and analysis of temperature field in metal welding deposition prototyping

More Information
  • Received Date: August 25, 2016
  • The forming quality, microstructures and corresponding forming defects in three-dimensional metal welding deposition are directly affected by the waiting time between layers because of the overlapping thermal cycles. Finite element models of single pass multilayer linear round-trip deposition based on SYSWELD solver were established. And experiments were conducted to verify the results. The results showed that the complex temperature field and thermal cycles of the welding deposition prototyping could be obtained accurately by numerical simulation method. As the layers increased, the heat accumulated gradually. Heat affected zone in the rear area of heat source enlarged constantly. Thus the waiting time between layers needed to be set. When the waiting time was greater than 30 s, the weld zone experienced a significant temperature cycle, and the forming quality was better. The microstructure was more uniform and fine with the increasement of the waiting time.
  • 单雪海, 周建平, 许 燕. 金属快速成型技术的研究进展[J]. 机床与液压, 2016, 44(7): 150-154.Shan Xuehai, Zhou Jianping, Xu Yan. Research review of metal rapid prototyping technology[J]. Machine Tool & Hydraulics, 2016, 44(7): 150-154.[2] 方洪渊. 焊接结构学[M]. 北京: 机械工业出版社, 2013.[3] 武传松. 焊接热过程与熔池形态[M]. 北京: 机械工业出版社, 2007.[4] 乌日开西·艾依提. 三维堆焊快速成形温度场的数值模拟[J]. 计算机应用与软件, 2009, 26(7): 263-264.Wurikaixi Aiyiti. Numerical simulation of rapid forming temperature fleld of 3D surfacing[J]. Computer Applications and Software, 2009, 26(7): 263-264.[5] 王家淳, 王希哲, 惠松骁. HE130合金激光焊接线能量与焦点位置研究[J]. 中国激光, 2003, 30(2): 179-184.Wang Jiachun, Wang Xizhe, Hui Songxiao. Research of linear heat input and laser focus position for laser welding HE130 titanium alloy[J]. Chinese Journal of Laser, 2003, 30(2): 179-184.[6] Zhao Huihui, Zhang Guangjun, Yin Ziqiang,et al. Three-dimensional finite element analysis of thermal stress in single-pass multi-layer weld-based rapid prototyping[J]. Journal of Materials Processing Technology, 2012, 212(1): 276-285.[7] Chew Youxiang, Pang John Hock Lye, Bi Guijun,et al. Thermo-mechanical model for simulating laser cladding induced residual stresses with single and multiple clad beads[J]. Journal of Materials Processing Technology, 2015, 224: 89-101.[8] Meng Xiangmeng, Qin Guoliang, Bai Xiaoyang,et al. Numerical analysis of undercut defect mechanism in high speed gas tungsten arc welding[J]. Journal of Materials Processing Technology, 2016, 236: 225-234.[9] 杨 帅, 彭 云, 张晓牧, 等. 热输入对C300接头温度场及焊缝胞晶组织的影响[J]. 焊接学报, 2015, 36(10): 12-16.Yang Shuai, Peng Yun, Zhang Xiaomu,et al. Influence of heat input on welding temperature fields andcellular microstructure of C300 welded joints[J]. Transactions of the China Welding Institution, 2015, 36(10): 12-16.[10] 赵慧慧, 张广军, 范 庆, 等. 基于焊接的多道单层再制造熔覆层组织及性能[J]. 焊接学报, 2011, 32(2): 45-48.Zhao Huihui, Zhang Guangjun, Fan Qing,et al. Microstructure and performances of multi-pass single-layer weld-based remanufacturing component[J]. Transactions of the China Welding Institution, 2011, 32(2): 45-48.[11] 李智钟, 周建平, 许 燕, 等. 基于Sysweld的T形管焊接件温度及应力应变场数值模拟分析[J]. 焊接学报, 2016, 37(7): 77-80.Li Zhizhong, Zhou Jianping, Xu Yan,et al. Numerical simulation anslysis on T-shaped pipe weldments temperature and stress-strain field based on Sysweld[J]. Transactions of the China Welding Institution, 2016, 37(7): 77-80.
  • Related Articles

    [1]LUO Yu1, ZHANG Zhongliang1,2, ZHOU Canfeng1,2, JIAO Xiangdong1,2, YANG Chenggong1. System modeling and simulation of narrow groove GMAW process for oscillating arc sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 5-8. DOI: 10.12073/j.hjxb.2018390002
    [2]SHI Mingxiao, ZHANG Binggang, CHEN Guoqing, FAN Ding. Modeling and simulation of PID control system of titanium alloy electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 5-8.
    [3]HUANG Jiankang, ZHU Ming, SHI Yu, ZHANG Yuming, Fan Ding. Modeling and simulation for DE-GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 63-67.
    [4]DUAN Bin, ZHANG Chenghui, SUN Tongjing, ZHANG Guangxian, GUO Min. Modeling and simulation of pulsed welding inverter[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 57-60,64.
    [5]YAN Zhihong, ZHANG Guangjun, WU Lin, SONG Yonglun. Simulation of welding shape process in P-GMAW based on neural network models[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 52-56.
    [6]ZHU Jinhong, DING Shuna, LI Zhigang, SHI Hongxin. Design and simulation of digital control system of air plasma cutting machine based on Proteus[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 49-52.
    [7]HONG Bo, HUANG Jun, PAN Jiluan, QU Yuebo. Modeling and simulation of weaving arc in submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 25-28.
    [8]FAN Ding, LI Jianjun, SHI Yu, GAO Yuan. Simulation of Al-MIG weld pool width control by nine-point controller[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 1-4.
    [9]HUO Meng-you, WANG Xin-gang, YIN Ping. Real-time interpolation algorithm and simulation of seam of intersection line for automatic welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 37-40.
    [10]CHEN Wen-jie, CHEN Shan-ben, LIN Tao. Internet based remote motion simulation and real-time control of arc welding robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 43-46.
  • Cited by

    Periodical cited type(6)

    1. 常鸿,魏守征,程璇,李志勇,张英乔. 不同焊丝下TC4钛/5A06铝脉冲MIG熔钎焊接头组织性能. 电焊机. 2025(03): 88-95 .
    2. 廖志谦,雷小伟,胡伟民,马照伟,余巍,路全彬,常云峰,方乃文,于华,林三宝. TA2/5083异种合金电弧熔钎焊接头组织和性能研究. 精密成形工程. 2025(04): 234-242 .
    3. 魏守征,饶文姬,段庆阳,李志勇,张英乔. 背面焊缝激光重熔处理对Ti/Al高速FA-MIG焊接头组织性能的影响. 航空制造技术. 2024(19): 117-124 .
    4. 崔东升,王景,于卓立,李罡,祝士博,张清扬,邱然锋. 钛/铝异种金属熔钎焊工艺的研究进展. 材料热处理学报. 2024(12): 10-19 .
    5. 黎国宁,张英乔,李志勇,魏守征,任杰亮. 铝合金冷弧焊接熔滴过渡行为分析. 热加工工艺. 2023(11): 49-53 .
    6. 刘李宾,魏守征,王建宏,李志勇,张英乔,李玉新. 高速超威弧MIG焊下TC4/5A06接头界面组织特性. 焊接学报. 2023(11): 80-87+133 . 本站查看

    Other cited types(5)

Catalog

    Article views (657) PDF downloads (1) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return