Advanced Search
ZHAO Dawei1, KANG Yuyun1, YI Rongtao2, LIANG Dongjie3. Research on process parameters optimization of laser welding for dual phase steel DP600[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 65-69. DOI: 10.12073/j.hjxb.2018390015
Citation: ZHAO Dawei1, KANG Yuyun1, YI Rongtao2, LIANG Dongjie3. Research on process parameters optimization of laser welding for dual phase steel DP600[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 65-69. DOI: 10.12073/j.hjxb.2018390015

Research on process parameters optimization of laser welding for dual phase steel DP600

More Information
  • Received Date: June 25, 2016
  • Experimental design was employed for 1.7 mm DP600 dual phase steel in order to optimize the laser welded joint mechanical property. The laser power, welding speed, focal point position and side-blowing shield gas flow were chosen as the process parameters and the mathematical model between the tensile strength of joint and the four process parameters were obtained by using regression analysis. The interaction effects of the welding speed and side-blowing shield gas on welding quality were explored. The optimal combination of welding process parameters was achieved using genetic algorithm and the largest tensile strength of welding joint was obtained as the welding power was 1.7 kW, welding speed was 25 mm/s, side-blowing shield gas flow was 2.4 m3/h, focal point position was -1 mm. The results of validation experiments showed that the model generally had a good effect and high precision, and its average relative error was within 5%, this study can effectively forecast and optimize the laser welding quality for the dual phase steel with the thickness of 1.7 mm.
  • 沈显峰, 黄文荣, 滕文华, 等. 辅助增强匙孔气流对激光焊接不锈钢组织和显微硬度的影响[J]. 焊接学报, 2013, 34(4): 19-22.Shen Xianfeng, Huang Wenrong, Teng Wenhua,et al. Effects of keyhole-assisted gas jet on microstructure and microhardness of stainless steel laser weld[J]. Transactions of the China Welding Institution, 2013, 34(4): 19-22.[2] 易荣涛, 赵大伟, 王元勋. 考虑相变影响的电阻点焊数字模拟[J]. 焊接学报, 2013, 34(10): 71-74.Yi Rongtao, Zhao Dawei, Wang Yuanxun. Numerical simulation of resistance spot welding considering phase transition effect[J]. Transactions of the China Welding Institution, 2013, 34(10): 71-74.[3] Rossinia M, Russo Spenaa P, Cortesea L,et al. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry[J]. Materials Science and Engineering: A, 2015, 628(25): 288-296.[4] Reisgen U, Schleser M, Mokrov O,et al. Optimization of laser welding of DP/TRIP steel sheets using statistical approach[J]. Optics & Laser Technology, 2012, 44(1): 255-262.[5] Sathiya P, Panneerselvam K, Abdul Jaleel M Y. Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm[J]. Materials & Design, 2012, 36(4): 490-498.[6] Olabi A G, Alsinani F O, Alabdulkarim A A,et al. Optimizing the CO2laser welding process for dissimilar materials[J]. Optics and Lasers in Engineering, 2013, 51(7): 832-839.[7] Patel C D. Experimental investigation and optimization of laser welding process parameters for mild steel[D]. Gujarat: Ganpat University, 2015.[8] Nakamura H, Kawahito Y, Nishimoto K,et al. Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium[J]. Journal of Laser Applications, 2015, 27(3): 1-10.[9] 杨东杰. 细管径侧吹气对激光焊接等离子体和熔池小孔影响的研究[D]. 上海: 上海交通大学, 2012.[10] 何正风, 张德丰, 周 品, 等. MATLAB概率与数理统计分析[M]. 北京: 机械工业出版社, 2012.[11] 罗 怡, 李春天, 周 银. 非等厚异种钢电阻点焊熔核成形的多元非线性回归模型[J]. 焊接学报, 2010, 31(11): 85-88.Luo Yi, Li Chuntian, Zhou Yin. Nonlinear multiple regression modeling of nugget formation for dissimilar steel welding with unequal thickness[J]. Transactions of the China Welding Institution, 2010, 31(11): 85-88.[12] Zhao D, Wang Y, Sheng S,et al. Multi-objective optimal design of small scale resistance spot welding process with principal component analysis and response surface methodology[J]. Journal of Intelligent Manufacturing, 2014, 25(6): 1335-1348.[13] Prrasad K S, Rao C S, Rao D N. Optimization of fusion zone grain size, hardness, and ultimate tensile strength of pulsed current micro plasma arc welded Inconel 625 sheets using genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(9-12): 2287-2295.
  • Related Articles

    [1]XU Cheng, DONG Shihao, OU Zhengyu, HAN Zandong. Defect recognition of circumferential welds of pipelines in TOFD images based on YOLOv5[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 22-31. DOI: 10.12073/j.hjxb.20240115001
    [2]KONG Hua, ZHAO Zhenjia, ZOU Jianglin, WANG Zi, HUANG Zehong. The influence of laser-induced plume in the keyhole on the welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 20-26. DOI: 10.12073/j.hjxb.20220530001
    [3]HU Dan, LYU Bo, WANG Jingjing, GAO Xiangdong. Study on HOG-SVM detection method of weld surface defects using laser visual sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 57-62, 70. DOI: 10.12073/j.hjxb.20211231001
    [4]XIAO Sizhe, LIU Zhenguo, YAN Zhihong, LI Min, HUANG Jiyuan. Defect generation of small sample laser welding based on generative adversarial network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 43-48. DOI: 10.12073/j.hjxb.20220429003
    [5]HUANG Ruisheng, YANG Yicheng, JIANG Bao, NIE Xin, WANG Ziran. Analysis of welding characteristics of ultra-high power laser-arc hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 73-77,96. DOI: 10.12073/j.hjxb.2019400316
    [6]XU Kunshan, QIU Xingqi, JIANG Hui, WEI Renchao, ZHONG Junmin, . Analysis of magnetic memory signal of 20# steel welding defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 13-16,21.
    [7]SONG Jiaqiang, XIAO Jun, ZHANG Guangjun, WU Lin. Numerical simulation of free metal transfer of low current CO2 arc welding based on Surface Evolver[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 75-78,98.
    [8]LIU Xi. Fatigue reliability evaluation for welding construction containing welding defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 89-92,96.
    [9]WANG Ya-rong, ZHANG Zhong-dian. Defects in joint for resistance spot welding of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 9-12.
    [10]Liu Dezhen, Wei Xing, Zhou Yanhua. Ultrasonic C Scanning Image of Weld Defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (2): 77-83.
  • Cited by

    Periodical cited type(1)

    1. 陆巍巍,陈晨曦,徐港来,葛金波,温业勇. 动力电池连接片激光焊接虚焊原因分析与改善. 机械制造文摘(焊接分册). 2024(02): 19-23 .

    Other cited types(1)

Catalog

    Article views (771) PDF downloads (7) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return