Advanced Search
YANG Yachao, QUAN Huimin, DENG Linfeng, ZHAO Zhenxing. Prediction method of welding machine parameters based on neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 32-36. DOI: 10.12073/j.hjxb.2018390008
Citation: YANG Yachao, QUAN Huimin, DENG Linfeng, ZHAO Zhenxing. Prediction method of welding machine parameters based on neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 32-36. DOI: 10.12073/j.hjxb.2018390008

Prediction method of welding machine parameters based on neural network

More Information
  • Received Date: July 10, 2016
  • In view of the fact that pulse MIG welding has many parameters and is difficult to adjust, a welding parameter prediction method based on neural network is proposed. This method, having established BP neural network model of welding parameters by adopting LM(levenberg-marquarlt) algorithm, and making full use of the known data to train the network, have realized the prediction of the output parameters in any given welding current state, and then conduct test weld on single and double pulse MIG welding respectively by using the predicted values of welding parameters. The results show that the prediction method of welding parameters based on neural network is of high accuracy, that the welding process is stable, and that the seams can be well-formed, thus achieving a good unified adjustment.
  • Sen M, Mukherjee M, Pal T K. Evaluation of correlations between DP-GMAW process parameters and bead geometry[J]. Welding Journal, 2015, 94(8): 265s-279s.[2] Jie Y I, CAO S, LI L,et al. Effect of welding current on morphology and microstructure of Al alloy T-joint in double-pulsed MIG welding[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3204-3211.[3] 林 放, 黄文超, 陈小峰, 等. 基于局部牛顿插值的数字化焊机参数自调节算法[J]. 焊接学报, 2011, 32(3): 33-36.Lin Fang, Huang Wenchao, Chen Xiaofeng,et al. Digitial welder parameters self-regulating algorithm based on partial Newton interPolation[J]. Transactions of the China Welding Insititution, 2011, 32(3): 33-36.[4] 薛家祥, 姜乘风, 张晓莉, 等. 基于最小二乘法的脉冲 MIG 焊参数一元化调节[J]. 焊接学报, 2014, 35(8): 75-78.Xue Jiaxiang, Jiang Chengfeng, Zhang Xiaoli,et al. Research on unified adjustment of pulsed MIG welding parameters based on least squares method[J]. Transactions of the China Welding Insititution, 2014, 35(8): 75-78.[5] 黄文超, 熊丹枫, 薛家祥. 铝硅合金双脉冲MIG焊专家数据库[J]. 焊接技术, 2009, 38(11): 43-46.Huang Wenchao, Xiong Danfeng, Xue Jiaxiang. Study on expert database of double pulse MIG welding for Al-Si alloy[J]. Welding Technology, 2009, 38(11): 43-46.[6] 陈小峰, 林 放, 魏仲华, 等. 基于数学建模的铝合金双脉冲MIG焊专家数据库设计[J]. 焊接学报, 2011, 32(5): 37-40.Cheng Xiaofeng, Lin Fang, Wei Zhonghua,et al. Double-pulsed MIG expert database based on mathematical modeling[J]. Transactions of the China Welding Insititution, 2011, 32(5): 37-40.[7] 刘 倩. 基于人工神经网络的电池容量预测[J]. 武汉理工大学学报, 2006, 28(3): 28-31.Liu Qian. Estimation for SOC of MH/Ni battery based on artificial neural network[J]. Journal of Wuhan University of Technology, 2006, 28(3): 28-31.
  • Related Articles

    [1]MA Nüjie, GAO Xiangdong, DAI Xinxin, ZHANG Nanfeng. Magnetic field characteristic simulation and magneto-optical imaging detection of weld cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 77-81. DOI: 10.12073/j.hjxb.2019400239
    [2]GAO Xiangdong, CHEN Tingyan, ZHANG Yanxi, YOU Deyong. Detection of tight-butt joint weld based on multi-scale morphology of magneto-optical image[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 43-46. DOI: 10.12073/j.hjxb.20170410
    [3]CHEN Yuquan, GAO Xiangdong. Neural network compensation for micro-gap weld detection by magneto-optical imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 33-36.
    [4]MO Ling, GAO Xiangdong, XIAO Zhenlin, CHEN Xiaohui. Weld detection of laser welding using magneto-optical color imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 37-40.
    [5]GAO Xiangdong, LIU Yi, ZHANG Chi. Recognition of magneto-optical image of micro-gap weld using fractal dimension method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 11-14.
    [6]GAO Xiangdong, ZHEN Renhe. A method to detect micro weld gap based on magneto-optical imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 11-14.
    [7]GAO Liwen, XUE Jiaxiang, CHEN Hui, LIN Zhihui, LIANG Yongquan. Self-adapting detection of cycle stages of the current waveform in DP-GMAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (8): 47-50.
    [8]GAO Fei, WANG Kehong, LIANG Yongshun, ZHAN Lanlan, ZHANG Yan. A multi-scale fractal image segmentation method for arc welding pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 33-36.
    [9]LIU Pengfei, SHAN Ping, LUO Zhen. Detection method of spot welding based on fractal and support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 38-42.
    [10]LIAO Ping, YANG Wen-jie, LI Fu-jin. Design of Electric Eddy Sensor for Detecting Temperature of Back Side of Weld Pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (4): 57-60.

Catalog

    Article views (767) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return