Citation: | ZHU Xinjie, LI Yongtao, DENG Mingxi, YAO Sen, ZHANG Jie. Variable-rank imaging and testing of multi-frames for line array of ultrasonic guided waves with weld scattering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 80-86. DOI: 10.12073/j.hjxb.20231023001 |
The imaging and testing of ultrasonic guided wave array in plates under the condition of weld scattering is of great significance. The variable-rank imaging of multi-frames for line arrays of ultrasonic shear horizontal( SH)guided waves is proposed for testing of weld plate. The imaging mechanism of variable-rank imaging of multi-frames for line array of ultrasonic guided waves with weld scattering is discussed, and the relationship between the receiving matrix and its rank is analyzed. The results show that when the weld scattering factor k ≥ 2, the rank of the receiving matrix will increase to (k-1) times the number of elements in the synthetic aperture array. With the increase of the rank of the receiving matrix, the defect grayscale and signal-to-noise ratio (SNR) of the variable-rank images of multi-frames increase to varying degrees. The SNR curves would have inflection points when the rank is half of the full rank, and the imaging effect would be better when the rank is two-thirds of the full rank. The variable-rank imaging of multi-frames for line array of ultrasonic guided waves would effectively characterize the defects with the same wavelength size in the weld plate. The imaging and testing of experiment verifies the effectiveness of the theoretical analysis, which demonstrate the feasibility and validity of this research approach.
[1] |
刘韧, 吴斌, 高翔, 等. 管道缺陷和特征的多点多频超声导波检测方法[J/OL]. 应用声学, 1 − 11[2024-12-09]. http://kns.cnki.net/kcms/detail/11.2121.O4.20240614.1520.004.html.
Liu Ren, Wu Bin, Gao Xiang, et al. A multi-point and multi-frequency ultrasonic guided wave detection method of pipeline defects and features[J/OL]. Journal of Applied Acoustics, 1 − 11[2024-12-09]. http://kns.cnki.net/kcms/detail/11.2121.O4.20240614.1520.004.html.
|
[2] |
李绪丰, 罗伟坚, 孙杰, 等. 大型石化装备无损检测技术应用进展[J]. 无损检测, 2024, 46(10): 7 − 12. doi: 10.11973/wsjc240376
Li Xufeng, Luo Weijian, Sun Jie. Application progress of nondestructive testing technology for large-scale petrochemical equipment[J]. Nondestructive Testing, 2024, 46(10): 7 − 12. doi: 10.11973/wsjc240376
|
[3] |
Lü F, Zhou X Y, Ding Z, et al. Application research of ultrasonic-guided wave technology in pipeline corrosion defect detection: a review[J]. Coatings, 2024, 14(3): 358. doi: 10.3390/coatings14030358
|
[4] |
张晓丹, 白石, 刘志尧, 等. 航空锂电池焊缝的多通道多频涡流检测[J]. 焊接学报, 2024, 45(8): 85 − 94.
Zhang Xiaodan, Bai Shi, Liu Zhiyao, et al. Multi-channel multi-frequency eddy current detection of lithium battery welds in aviation field[J]. Transactions of the China Welding Institution, 2024, 45(8): 85 − 94.
|
[5] |
Tabjula J, Kanakambaran S, Rajagopal P, et al. Sparse sampled visualization of ultrasonic guided waves for defect identification in plate structures[J]. NDT & E International, 2023, 138: 102890.
|
[6] |
张婧, 邓楚豪, 胡晓壮, 等. 合成孔径聚焦超声成像检测技术研究与应用概况[J]. 工程与建设, 2024, 38(4): 924 − 926. doi: 10.3969/j.issn.1673-5781.2024.04.060
Zhang Jing, Deng Chuhao, Hu Xiaozhuang. Overview of research and application of synthetic aperture focused ultrasound imaging detection technology[J]. Engineering and Construction, 2024, 38(4): 924 − 926. doi: 10.3969/j.issn.1673-5781.2024.04.060
|
[7] |
朱新杰, 邓明晰, 都东, 等. 接收孔径对超声导波合成孔径阵列成像检测的影响分析[J]. 机械工程学报, 2018, 54(12): 133 − 140. doi: 10.3901/JME.2018.12.133
Zhu Xinjie, Deng Mingxi, Du Dong, et al. Influence of receiving aperture on imaging and testing of synthetic aperture array for ultrasonic guided waves[J]. Journal of Mechanical Engineering, 2018, 54(12): 133 − 140. doi: 10.3901/JME.2018.12.133
|
[8] |
Zhu X J, Yao S, Deng M X, et al. The multi-frame imaging detection of ultrasonic guided waves in welded structural plates based on arc sparse array with left rank[J]. Applied Sciences, 2024, 14(19): 8981. doi: 10.3390/app14198981
|
[9] |
朱新杰, 邓明晰, 蔡淑娟, 等. 板中超声导波弧形合成孔径阵列多帧满秩成像检测[J]. 机械工程学报, 2020, 56(24): 24 − 30. doi: 10.3901/JME.2020.24.024
Zhu Xinjie, Deng Mingxi, Cai Shujuan, et al. Multi-frames imaging detection of full rank for arc synthetic aperture array of ultrasonic guided waves in plates[J]. Journal of Mechanical Engineering, 2020, 56(24): 24 − 30. doi: 10.3901/JME.2020.24.024
|
[10] |
Zeng W, Liu Y Z, Yu S Z, et al. Research on ultrasonic guided wave technology for the rail fatigue cracks based on PCA-adaboost. M2 algorithm[J]. Journal of Testing and Evaluation, 2024, 52(1): 545 − 556. doi: 10.1520/JTE20230453
|
[11] |
Raisutis R, Tumsys O, Zukauskas E, et al. An inspection technique for steel pipes wall condition using ultrasonic guided helical waves and a limited number of transducers[J]. Materials, 2023, 16(15): 5410. doi: 10.3390/ma16155410
|
[12] |
Sun J Y, Yu Z X, Xu C, et al. Experimental and numerical investigation of acoustic emission source localization using an enhanced guided wave phased array method[J]. Sensors, 2024, 24(17): 5806. doi: 10.3390/s24175806
|
[13] |
肖扬, 高炜欣, 邓国浩. 小径管X射线焊缝图像缺陷识别算法[J]. 焊接学报, 2024, 45(2): 82 − 88.
Xiao Yang, Gao Weixin, Deng Guohao. Recognition algorithm of small-diameter tube X-ray welding defect image[J]. Transactions of the China Welding Institution, 2024, 45(2): 82 − 88.
|
[14] |
朱新杰, 邓明晰. 声波散射在焊接板结构超声导波合成孔径阵列成像中的作用[J]. 焊接学报, 2018, 39(7): 65 − 70.
Zhu Xinjie, Deng Mingxi. Action mechanism of acoustic scattering in synthetic aperture array imaging of ultrasonic guided waves in plate with welding structures[J]. Transactions of the China Welding Institution, 2018, 39(7): 65 − 70.
|
[15] |
朱新杰, 李永涛, 邓明晰, 等. 一种用于焊接结构多帧满秩成像检测的超声SH导波换能器[J]. 焊接学报, 2023, 44(4): 84 − 92.
Zhu Xinjie, Li Yongtao, Deng Mingxi, et al. An ultrasonic SH-guided-wave transducer for image detection of welded structure with multi-frame and in full rank[J]. Transactions of the China Welding Institution, 2023, 44(4): 84 − 92.
|
[1] | CHEN Genyu, ZHANG Yan, LEI Ran. Testing of hot crack using laser-MAG combined welding for 42CrMo steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 61-66. DOI: 10.12073/j.hjxb.2019400182 |
[2] | YU Zhaohui, YAN Hongge, YAN Junhui, WEN Zhong, LI Wei. Characterization and formation mechanisms of continuous porosities-like cracks in the heat-affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 84-88. DOI: 10.12073/j.hjxb.2019400132 |
[3] | YU Hanchen<sup>1</sup>, YAN Han<sup>2</sup>, LUAN Tianmin<sup>1</sup>, FAN Wei<sup>1</sup>, ZHANG Huiwen<sup>3</sup>. Investigation on the cause of the hot cracking in GTA welding of thick copper plates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 87-91. DOI: 10.12073/j.hjxb.2018390207 |
[4] | LI Jun, YANG Jianguo, TAN Xing, FANG Hongyuan. Experimental investigation on controlling welding hot crack with welding with trailing rotating extrusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 45-48. |
[5] | LI Jun, YANG Jianguo, YAN Dejun, FANG Hongyuan. Effect of restraint condition on hot cracking during welding of 2A12T4 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 69-72. |
[6] | HUANG Yifeng, LU Hao. Influence of initial stress of thin pressing parts on welding hot cracking susceptivity[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 99-102. |
[7] | ZHU Jindan, ZHANG Lijing, GONG Jianming. Numerical simutation on cracking growth behavior under effect of residual stresses in welding of pyrolysis tube[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 101-104,108. |
[8] | FAN Cheng-lei, FANG Hong-yuan, TAO Jun, WANG Xiao-teng. Strain field analysis of weld with trailing impact rolling to control residual stress and distortion and prevent hot cracking[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 47-50. |
[9] | Liu Weiping, Tian Xitang, Zhang Xiuzhi. A new method for prevention of weld hot cracking[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (2): 106-111. |
[10] | Si Zhongyao, Yu Erjing, Ying Huiyun, Liu Xingzhi, Liu Quan. STUDY OF THE TEMPERATURE RAGES OF HOT CRACKING FORMATION IN THE WELD METAL OF LOW-CARBON STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (2): 87-94. |