Advanced Search
TANG Cunjiang, AN Tongbang, PENG Yun, LIN Chuncheng, MA Chengyong, LIU Xuming. Effect of heat input on microstructure and mechanical properties of weld metal of 690 MPa grade HSLA steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 110-119. DOI: 10.12073/j.hjxb.20230501001
Citation: TANG Cunjiang, AN Tongbang, PENG Yun, LIN Chuncheng, MA Chengyong, LIU Xuming. Effect of heat input on microstructure and mechanical properties of weld metal of 690 MPa grade HSLA steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 110-119. DOI: 10.12073/j.hjxb.20230501001

Effect of heat input on microstructure and mechanical properties of weld metal of 690 MPa grade HSLA steel

More Information
  • Received Date: April 30, 2023
  • Available Online: July 16, 2024
  • 690 MPa grade high strength low alloy (HSLA) steel of 27 mm in thickness was welded by self-developed electrode of 4.0 mm in diameter without preheating. The effects of heat input on microstructure and mechanical properties of weld metal were studied and the mechanism of strength-toughness was revealed. The results show that heat input had significant effect on microstructure and mechanical properties of weld metal, which increased from 13 kJ/cm to 19 kJ/cm. With the increasing of heat input, tensile strength and hardness of butt joint decreased, −50 ℃ impact energy firstly increased and then decreased. Good strength-toughness was obtained under the heat input condition of 16 kJ/cm. The tensile strength of butt joint was 828 MPa, −50 ℃ impact energy of weld metal was 71 ~ 90 J, the average value was 80 J. The lower strength-toughness properties of weld metal under 13 kJ/cm and 19 kJ/cm heat input conditions were related with the formation of lath bainite and ferrite side plates, the formation of coarse M-A, respectively. Under the 16 kJ/cm heat input condition, good plasticity acicular ferrite was sufficiently formed and acicular ferrite and bainite were distributed in an interwoven pattern. Meanwhile, small and dispersively distributed M-A had no obviously negative effect on toughness of weld metal. Therefore, weld metal with excellent strength-toughness had been obtained.

  • [1]
    栗卓新, 苏小虎, 李红, 等. 690 MPa级以上高强钢焊接熔敷金属微观组织及其联合贝氏体的研究进展[J]. 中国材料进展, 2019, 38(12): 1169 − 1176.

    Li Zhuoxin, Su Xiaohu, Li Hong, et al. Research progress on microstructure and coalesced bainite of welded deposited metal to high-strength steel with tensile strength above 690 MPa[J]. Materials China, 2019, 38(12): 1169 − 1176.
    [2]
    彭云, 宋亮, 赵琳, 等. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601 − 618.

    Peng Yun, Song Liang, Zhao Lin, et al. Research status of weldability of advanced steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 601 − 618.
    [3]
    曹志龙, 朱浩, 安同邦, 等. 1000 MPa级高强钢熔敷金属强韧化机理分析[J]. 焊接学报, 2023, 44(7): 116 − 122.

    Cao Zhilong, Zhu Hao, An Tongbang, et al. Study on mechanism of strengthening and toughening of deposited metal of 1000 MPa grade high strength steel[J]. Transactions of the China Welding Institution, 2023, 44(7): 116 − 122.
    [4]
    曾道平, 安同邦, 郑韶先, 等. 热输入对船用440 MPa级低合金高强度钢焊缝组织及性能的影响[J]. 焊接学报, 2023, 44(8): 74 − 82.

    Zeng Daoping, An Tongbang, Zheng Shaoxian, et al. Effect of heat input on microstructure and properties of weld seam of marine 440 MPa grade HSLA steel[J]. Transactions of the China Welding Institution, 2023, 44(8): 74 − 82.
    [5]
    安同邦, 郑庆, 张永林, 等. 1300 MPa级低合金高强钢SH-CCT曲线及冷裂敏感性分析[J]. 焊接学报, 2022, 43(9): 75 − 81.

    An Tongbang, Zheng Qing, Zhang Yonglin, et al. SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel[J]. Transactions of the China Welding Institution, 2022, 43(9): 75 − 81.
    [6]
    Dhua S K, Mukerjee D, Sarma D S. Weldability and microstructural aspects of shielded metal arc welded HSLA-100 steel plates[J]. ISIJ International, 2002, 42(3): 290 − 298. doi: 10.2355/isijinternational.42.290
    [7]
    Lis A K, Lis J, Jeziorski L. Advanced ultra-low carbon bainitic steels with high toughness[J]. Journal of Materials Processing Technology, 1997, 64(1-3): 255 − 266. doi: 10.1016/S0924-0136(96)02575-7
    [8]
    Christein J P, Warren J L. Implementation of HSLA-100 steel in aircraft carrier Construction-CVN 74[J]. Journal of Ship Production, 1995, 11(2): 97 − 101. doi: 10.5957/jsp.1995.11.2.97
    [9]
    Evans G M. Effects of silicon on the microstructure and properties of C-Mn all-weld-metal deposits[J]. Metal Construction, 1986, 18(7): 438r − 444r.
    [10]
    Kang B Y, Kim H J, Hwang S K. Effect of Mn and Ni on the variation of the microstructure and mechanical properties of low-carbon weld metals[J]. ISIJ International, 2000, 40(12): 1237 − 1245. doi: 10.2355/isijinternational.40.1237
    [11]
    Zhang Z, Farrar R A. Influence of Mn and Ni on the microstructure and toughness of C-Mn-Ni weld metals[J]. Welding Journal, 1997, 76(5): 183s − 196s.
    [12]
    Bhole S D, Nemade J B, Collins L, et al. Effect of nickel and molybdenum additions on weld metal toughness in a submerged arc welded HSLA line-pipe steel[J]. Journal of Materials Processing Technology, 2006, 173(1): 92 − 100. doi: 10.1016/j.jmatprotec.2005.10.028
    [13]
    王学林, 董利明, 杨玮玮, 等. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响[J]. 金属学报, 2016, 52(6): 649 − 660.

    Wang Xuelin, Dong Liming, Yang Weiwei, et al. Effect of Mn, Ni, Mo proportion on microstructure and mechanical properties of weld metal of K65 pipeline steel[J]. Acta Metallurgica Sinica, 2016, 52(6): 649 − 660.
    [14]
    娄宇航, 肖红军, 彭云, 等. 690 MPa级低合金高强钢焊接接头组织性能[J]. 材料科学与工艺, 2012, 20(2): 101 − 107.

    Lou Yuhang, Xiao Hongjun, Peng Yun, et al. Study on microstructure and properties of welded joints of a 690 MPa grade HSLA steel[J]. Materials Science and Technology, 2012, 20(2): 101 − 107.
    [15]
    Lan L, Kong X, Qiu C. Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles[J]. Materials Characterization, 2015, 105: 95 − 103. doi: 10.1016/j.matchar.2015.05.010
    [16]
    Babu S S. The mechanism of acicular ferrite in weld deposits[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3-4): 267 − 278. doi: 10.1016/j.cossms.2004.10.001
    [17]
    Terasaki H, Yamada T, Komizo Y. In-situ observation of nucleation and growth of acicular ferrite in weld metal[J]. Tetsu-to-Hagane, 2007, 93(1): 27 − 32. doi: 10.2355/tetsutohagane.93.27
    [18]
    王学林, 李学达, 尚成嘉. 高强度管线钢焊接热影响区显微组织精细表征[J]. 焊管, 2019, 42(7): 26 − 38.

    Wang Xuelin, Li Xueda, Shang Chengjia. Fine characterization of high strength pipeline steel welding HAZ microstructure[J]. Welded Pipe and Tube, 2019, 42(7): 26 − 38.
    [19]
    杨宇龙, 贾潇, 朱伏先, 等. 大线能量焊接用钢粗晶热影响区针状铁素体形成过程控制技术的研究进展[J]. 材料导报, 2022, 36(5): 145 − 155.

    Yang Yulong, Jia Xiao, Zhu Fuxian, et al. Research progeress on control technology of acicular ferrite in CGHAZ for large heat-input welding steels[J]. Materials Reports, 2022, 36(5): 145 − 155.
    [20]
    张德勤, 云绍辉, 田志凌, 等. 微合金钢焊缝组织中针状铁素体形核与长大驱动力[J]. 焊接学报, 2005, 26(1): 12 − 16.

    Zhang Deqin, Yun Shaohui, Tian Zhiling, et al. Driving force of acicular ferrite nucleation and growth in weld metal of microalloyed steel[J]. Transactions of the China Welding Institution, 2005, 26(1): 12 − 16.
    [21]
    钟群鹏, 张峥, 王守凯, 等. 碳钢韧脆转变温度与组织参量和解理断裂单元尺寸的关系[J]. 钢铁, 1993, 28(10): 49 − 64.

    Zhong Qunpeng, Zhang Zheng, Wang Shoukai, et al. Relation of ductile-brittle transition temperature to microstructure parameter and size of cleavage fracture element[J]. Iron and Steel, 1993, 28(10): 49 − 64.
  • Related Articles

    [1]SUI Chufan, LIU Zhengjun, AI Xingyu. Effect of ultrasonic vibration on welding hot crack of 6061 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 122-128. DOI: 10.12073/j.hjxb.20220106002
    [2]YU Weiyuan, WU Baolei, SUN Xuemin, LEI Zhen, SUN Jungang. Wetting behavior of Fe/Sn system under ultrasonic[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 12-17. DOI: 10.12073/j.hjxb.20190708002
    [3]LI Xiangwei, FANG Ji, ZHAO Shangchao. Master S-N curve fitting method of welded structure and software development[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 80-85. DOI: 10.12073/j.hjxb.20191018001
    [4]WANG Jujin, YANG Guangwu, YANG Bing, WANG Feng. S-N curve analysis of ring welding based on structural stress method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 63-68. DOI: 10.12073/j.hjxb.2019400210
    [5]WANG Jianfeng1,2, SUN Qingjie1,2, MA Jiangkun2, FENG Jicai1,2. Microstructure and mechanical properties of underwater wet welded joint of E40 ship plate steel subjected to ultrasonic vibration[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 1-5. DOI: 10.12073/j.hjxb.2018390084
    [6]WEI Guoqian, YUE Xudong, DANG Zhang, HE Yibin. S-N and IEFM combined fatigue life analysis for welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 23-27.
    [7]HU Hui-hui, WANG Dongpo, WU Liangchen, DENG Caiyan. Hot spot stress design S-N curve of ultrasonic impact treated welded joints of medium and low strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 124-128.
    [8]FAN Wenxue, CHEN Furong, XIE Ruijun, TANG Dafu. Analysis of vibration fatigue S-N curve on Q235B steel butt welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 39-42.
    [9]ZHAO Wenzhong, WEI Hongliang, FANG Ji, LI Jitao. The theory and application of the virtual fatigue test of welded structures based on the master S-N curve method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 75-78.
    [10]LIU Xiaochao, WU Chuansong. Effect of ultrasonic vibration on microstructure and mechanical properties of friction stir welded joint of 6061-T4 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 49-53.
  • Cited by

    Periodical cited type(2)

    1. 单丽娜. 永磁转子屏蔽套焊接工艺研究. 冶金设备. 2023(02): 16-18 .
    2. 孙雅杰,常云龙. 磁控电弧焊接过程及新技术研究进展. 材料导报. 2020(21): 21155-21165 .

    Other cited types(4)

Catalog

    Article views (207) PDF downloads (79) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return