Advanced Search
WANG Ying, GAO Sheng. Identification method of GTAW welding penetration state based on improved CeiT[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 26-35, 42. DOI: 10.12073/j.hjxb.20230327002
Citation: WANG Ying, GAO Sheng. Identification method of GTAW welding penetration state based on improved CeiT[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 26-35, 42. DOI: 10.12073/j.hjxb.20230327002

Identification method of GTAW welding penetration state based on improved CeiT

More Information
  • Received Date: March 26, 2023
  • Available Online: February 05, 2024
  • Aiming at the problems of high similarity between melt pool information and background, much noise, poor real-time prediction and low recognition accuracy, a GTAW welding fusion state recognition method based on improved CeiT network model is proposed. First, the Image-to-Tokens module is lightened and improved by MobileNetV3 to enhance the real-time performance of prediction; second, the DGCA module is designed to improve the LeFF module to enhance the remote dependencies among features and enrich the categorical information contained in the class labels; and lastly, the fusion of the underlying features and the high-level semantic features in the LeFF module improves the model's ability to represent the features of the melt pool. Simulation experiments show that the proposed model obtains higher accuracy and faster detection speed compared with MobileNetV3, ResNet50, ShuffleNetV2, DeiT, and CeiT models.

  • [1]
    Wang Y M, Han J, Lu J, et al. TIG stainless steel molten pool contour detection and weld width prediction based on res-seg[J]. Metals-Open Access Metallurgy Journal, 2020, 10(11): 1495.
    [2]
    Jiao W, Wang Q, Cheng Y, et al. Prediction of weld penetration using dynamic weld pool arc images[J]. Welding Journal, 2020, 99(11): 295s − 302s. doi: 10.29391/2020.99.027
    [3]
    Kim H, Nam K, Oh S, et al. Deep-learning-based real-time monitoring of full-penetration laser keyhole welding by using the synchronized coaxial observation method[J]. Journal of Manufacturing Processes, 2021, 68(8): 1018 − 1030.
    [4]
    Wu J Z, Shi J W, Gao Y F, et al. Penetration recognition in GTAW welding based on time and spectrum images of arc sound using deep learning method[J]. Metals, 2022, 12(9): 1549. doi: 10.3390/met12091549
    [5]
    Ma G H, Yu L S, Yuan H T, et al. A vision-based method for lap weld defects monitoring of galvanized steel sheets using convolutional neural network[J]. Journal of Manufacturing Processes, 2021, 64: 130 − 139. doi: 10.1016/j.jmapro.2020.12.067
    [6]
    Chang B X, Huang J Y. Discrimination of molten pool penetration based on genetic algorithm optimization of BP neural network[J]. Journal of Physics Conference Series, 2020, 1437: 012110. doi: 10.1088/1742-6596/1437/1/012110
    [7]
    陈宸, 周方正, 李成龙, 等. 融合空间和通道特征的等离子弧焊熔池熔透状态预测方法[J]. 焊接学报, 2023, 44(4): 30 − 38. doi: 10.12073/j.hjxb.20220516001

    Chen Chen, Zhou Fangzheng, Li Chenglong, et al. Prediction method of plasma arc welding molten pool melting state based on spatial and channel characteristics[J]. Transactions of the China Welding Institution, 2023, 44(4): 30 − 38. doi: 10.12073/j.hjxb.20220516001
    [8]
    王颖, 高胜, 吴立明. 基于胶囊网络的TIG熔透预测[J]. 焊接, 2023(4): 15 − 20,28. doi: 10.12073/j.hj.20220425003

    Wang Ying, Gao Sheng, Wu Liming. TIG penetration prediction based on capsule network[J]. Welding & Joining, 2023(4): 15 − 20,28. doi: 10.12073/j.hj.20220425003
    [9]
    Gao Y F, Wang Q S, Xiao J H, et al. Weld penetration identification with deep learning method based on auditory spectrum images of arc sounds[J]. Welding in the World, 2022, 66(12): 2509 − 2520. doi: 10.1007/s40194-022-01373-7
    [10]
    Yu R W, He H Y, Han J, et al. Monitoring of back bead penetration based on temperature sensing and deep learning[J]. Measurement, 2022, 188. DOI: 10.1016/J.MEASUREMENT.2021.110410.
    [11]
    段明瑞. 基于深度学习的乏燃料池不锈钢GTAW焊接质量在线监测[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    Duan Mingrui. On-line monitoring of welding quality of stainless steel GTAW in spent fuel pool based on deep learning [D]. Harbin : Harbin Institute of Technology, 2021.
    [12]
    Liu S K , Wu D, Luo Z Y , et al. Measurement of pulsed laser welding penetration based on keyhole dynamics and deep learning approach[J]. Measurement, 2022, 199. DOI:10.1016/J. MEASUREMENT.2022.111579.
    [13]
    Nomura K, Fukushima K, Matsumura T, et al. Burn-through prediction and weld depth estimation by deep learning model monitoring the molten pool in gas metal arc welding with gap fluctuation[J]. Journal of Manufacturing Processes, 2020. DOI: 10.1016/j.jmapro.2020.10.019.
    [14]
    Xia C Y, Pan Z X, Fei Z Y, et al. Vision based defects detection for Keyhole TIG welding using deep learning with visual explanation[J]. Journal of Manufacturing Processes, 2020, 56(8): 845 − 855.
    [15]
    刘天元, 鲍劲松, 汪俊亮, 等. 融合时序信息的激光焊接熔透状态识别方法[J]. 中国激光, 2021, 48(6): 228 − 238.

    Liu Tianyuan, Bao Jinsong, Wang Junliang, et al. Laser welding penetration state recognition method fused with timing information[J]. Chinese Journal of Lasers, 2021, 48(6): 228 − 238.
    [16]
    卢振洋, 宫兆辉, 闫志鸿, 等. 基于深度学习的TIG焊背部熔池检测和熔宽提取[J]. 北京工业大学学报, 2020, 46(9): 988 − 996. doi: 10.11936/bjutxb2018110030

    Lu Zhenyang, Gong Zhaohui, Yan Zhihong, et al. Deep learning based detection and width extraction of back molten pool in TIG welding[J]. Journal of Beijing University of Technology, 2020, 46(9): 988 − 996. doi: 10.11936/bjutxb2018110030
    [17]
    Wang Z M, Li L Y, Chen H Y, et al. Recognition of GTAW weld penetration based on the lightweight model and transfer learning[J]. Welding in the World, 2022, 67(1): 251 − 264.
    [18]
    Li C, Wang Q, Jiao W, et al. Deep learning-based detection of penetration from weld pool reflection images[J]. Welding Journal, 2020, 99(9): 239s − 245s. doi: 10.29391/2020.99.022
    [19]
    Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 10012 − 10022.
    [20]
    Liang S J, Yu M X, Lu W S, et al. A lightweight vision transformer with symmetric modules for vision tasks[J]. Intelligent Data Analysis, 2023, 27(6): 1741 − 1757. doi: 10.3233/IDA-227205
    [21]
    Yuan K, Guo S, Liu Z, et al. Incorporating convolution designs into visual transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 559 − 568.
    [22]
    Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
  • Related Articles

    [1]MIAO Guanghong, HU Yu, AI Jiuying, QI Junxiang, MA Honghao, SHEN Zhaowu. Numerical simulation research on the effect of explosive covering on explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 40-48. DOI: 10.12073/j.hjxb.20220121002
    [2]SUN Jiamin, CAI Jianpeng, YE Yanhong, Deng Dean. Numerical simulation of electro slag welding temperature field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 93-96.
    [3]ZHANG Xueqiu, YANG Jianguo, LIU Xuesong, FANG Hongyuan, QU Shen. Numerical simulation of welding distortion of blisk on aero-engine by controlling heat input[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 37-40.
    [4]WANG Jianmin, ZHU Xi, LIU Runquan. Three dimensional numerical simulation for explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 109-112.
    [5]JIANG Wen-chun, GONG Jian-ming, TANG Jian-qun, CHEN Hu, TU Shan-dong. Numerical simulation of hydrogen diffusion under welding residual stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 57-60,64.
    [6]ZHAO Yan-hua, LIN San-bao, HE Zi-qiu, WU Lin. Numerical simulation of 3D friction stir welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 75-78.
    [7]WU Yan-gao, LI Wu-shen, ZOU Hong-jun, FENG Ling-zhi. State-of-the-art of Numerical Simulation In Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 89-92.
    [8]ZHANG Xian-hui, TAN Chang-ying, CHEN Pei-yin. Numerical Simulation of Hydrogen Diffusion in Welded Joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 51-54.
    [9]Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29.
    [10]Wang Jianhua, Zhong Xiaomin, Qi Xinhai. 3-D numerical simulation of deformations in pipe-plate joint with holes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (3): 140-145.
  • Cited by

    Periodical cited type(1)

    1. 丁业立,牛红伟,刘多,刘积厚,雷玉珍. K9玻璃与2507不锈钢的真空钎焊. 焊接. 2019(01): 1-4+11+65 .

    Other cited types(1)

Catalog

    Article views (176) PDF downloads (44) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return